用高阶函数的自定义导数组成自动微分法

Sam Estep
{"title":"用高阶函数的自定义导数组成自动微分法","authors":"Sam Estep","doi":"arxiv-2408.07683","DOIUrl":null,"url":null,"abstract":"Recent theoretical work on automatic differentiation (autodiff) has focused\non characteristics such as correctness and efficiency while assuming that all\nderivatives are automatically generated by autodiff using program\ntransformation, with the exception of a fixed set of derivatives for primitive\noperations. However, in practice this assumption is insufficient: the\nprogrammer often needs to provide custom derivatives for composite functions to\nachieve efficiency and numerical stability. In this work, we start from the\nuntyped lambda calculus with a reverse-mode autodiff operator, extend it with\nan operator to attach manual derivatives, and demonstrate its utility via\nseveral examples.","PeriodicalId":501197,"journal":{"name":"arXiv - CS - Programming Languages","volume":"135 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composing Automatic Differentiation with Custom Derivatives of Higher-Order Functions\",\"authors\":\"Sam Estep\",\"doi\":\"arxiv-2408.07683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent theoretical work on automatic differentiation (autodiff) has focused\\non characteristics such as correctness and efficiency while assuming that all\\nderivatives are automatically generated by autodiff using program\\ntransformation, with the exception of a fixed set of derivatives for primitive\\noperations. However, in practice this assumption is insufficient: the\\nprogrammer often needs to provide custom derivatives for composite functions to\\nachieve efficiency and numerical stability. In this work, we start from the\\nuntyped lambda calculus with a reverse-mode autodiff operator, extend it with\\nan operator to attach manual derivatives, and demonstrate its utility via\\nseveral examples.\",\"PeriodicalId\":501197,\"journal\":{\"name\":\"arXiv - CS - Programming Languages\",\"volume\":\"135 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.07683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近关于自动微分(autodiff)的理论研究主要集中在正确性和效率等特性上,同时假设除了原始运算的一组固定导数外,所有导数都是由自动微分利用程序转换自动生成的。然而,在实践中,这一假设是不够的:程序员往往需要为复合函数提供自定义导数,以实现效率和数值稳定性。在这项工作中,我们从带有反向模式自动衍射算子的无类型 lambda 微积分出发,用一个附加手动导数的算子对其进行了扩展,并通过几个例子演示了它的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Composing Automatic Differentiation with Custom Derivatives of Higher-Order Functions
Recent theoretical work on automatic differentiation (autodiff) has focused on characteristics such as correctness and efficiency while assuming that all derivatives are automatically generated by autodiff using program transformation, with the exception of a fixed set of derivatives for primitive operations. However, in practice this assumption is insufficient: the programmer often needs to provide custom derivatives for composite functions to achieve efficiency and numerical stability. In this work, we start from the untyped lambda calculus with a reverse-mode autodiff operator, extend it with an operator to attach manual derivatives, and demonstrate its utility via several examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Memory Consistency and Program Transformations No Saved Kaleidosope: an 100% Jitted Neural Network Coding Language with Pythonic Syntax Towards Quantum Multiparty Session Types The Incredible Shrinking Context... in a decompiler near you Scheme Pearl: Quantum Continuations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1