{"title":"合成具有三维多孔结构的 N/O 原子掺杂生物炭以有效吸收电磁波","authors":"Zheng Yang, Mengjie Zhang, Shipeng Wang, Yuqing Lu, Boyue Yu, Nian Liu, Xinrui Gao, Qingwen Wang, Wei Yang, Qianqian Li, Jing Wang","doi":"10.1002/asia.202400465","DOIUrl":null,"url":null,"abstract":"Developing biochar with large specific surface area (SSA), heteroatom doping, and porous structure is attracting substantial attention to absorb electromagnetic wave (EMW) in recent. Herein, a novel method of ethanol and KOH co‐treatment is used to produce the biomass carbon deriving from pitaya peels. The obtained carbon possesses the high SSA of 1580 m2/g, successful N/O atoms co‐doping, and massive pores with different size. The results of EMW absorption measurement show that the prepared biochar could achieve over 99% absorpition to EMW, which the highest reflection loss is of ca. ‐45.25 dB at 7.54 GHz with an effective absorption bandwidth (EAB) of ca. 4.87 GHz. The execellent microwave absorption property is caused by the surface defects, dipole and interface polarizations of the synthesized biochar owning unique microstructure and N/O atoms co‐doping. Hence, this avenue provides a new reference for fabricating low‐cost and eco‐friendly biochar as a microwave absorber.","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of N/O Atoms Co‐doped Biochar with 3D Porous Structure for Effective Electromagnetic Wave Absorption\",\"authors\":\"Zheng Yang, Mengjie Zhang, Shipeng Wang, Yuqing Lu, Boyue Yu, Nian Liu, Xinrui Gao, Qingwen Wang, Wei Yang, Qianqian Li, Jing Wang\",\"doi\":\"10.1002/asia.202400465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing biochar with large specific surface area (SSA), heteroatom doping, and porous structure is attracting substantial attention to absorb electromagnetic wave (EMW) in recent. Herein, a novel method of ethanol and KOH co‐treatment is used to produce the biomass carbon deriving from pitaya peels. The obtained carbon possesses the high SSA of 1580 m2/g, successful N/O atoms co‐doping, and massive pores with different size. The results of EMW absorption measurement show that the prepared biochar could achieve over 99% absorpition to EMW, which the highest reflection loss is of ca. ‐45.25 dB at 7.54 GHz with an effective absorption bandwidth (EAB) of ca. 4.87 GHz. The execellent microwave absorption property is caused by the surface defects, dipole and interface polarizations of the synthesized biochar owning unique microstructure and N/O atoms co‐doping. Hence, this avenue provides a new reference for fabricating low‐cost and eco‐friendly biochar as a microwave absorber.\",\"PeriodicalId\":145,\"journal\":{\"name\":\"Chemistry - An Asian Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - An Asian Journal\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1002/asia.202400465\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202400465","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis of N/O Atoms Co‐doped Biochar with 3D Porous Structure for Effective Electromagnetic Wave Absorption
Developing biochar with large specific surface area (SSA), heteroatom doping, and porous structure is attracting substantial attention to absorb electromagnetic wave (EMW) in recent. Herein, a novel method of ethanol and KOH co‐treatment is used to produce the biomass carbon deriving from pitaya peels. The obtained carbon possesses the high SSA of 1580 m2/g, successful N/O atoms co‐doping, and massive pores with different size. The results of EMW absorption measurement show that the prepared biochar could achieve over 99% absorpition to EMW, which the highest reflection loss is of ca. ‐45.25 dB at 7.54 GHz with an effective absorption bandwidth (EAB) of ca. 4.87 GHz. The execellent microwave absorption property is caused by the surface defects, dipole and interface polarizations of the synthesized biochar owning unique microstructure and N/O atoms co‐doping. Hence, this avenue provides a new reference for fabricating low‐cost and eco‐friendly biochar as a microwave absorber.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).