Dong Ji, Jing Hou, Zhiliang Cheng, Shuai Wei, Yue Zhai, Wenhao Li
{"title":"前沿 | 中国青岛市多尺度造价基岩城市三维工程地质模型的构建与应用","authors":"Dong Ji, Jing Hou, Zhiliang Cheng, Shuai Wei, Yue Zhai, Wenhao Li","doi":"10.3389/feart.2024.1435824","DOIUrl":null,"url":null,"abstract":"The 3D geological model serves as a cornerstone, establishing the essential foundation and prerequisite for numerical simulations, analytical assessments, and evaluative procedures that are integral to the disciplines of geotechnical and geological engineering. The task of integrating vast quantities of multi-source, heterogeneous modeling data, the absence of stratigraphic division standards to meet varying precision requirements, and addressing the application demands of 3D geological models beyond the geological domain, pose significant challenges to the endeavor of 3D geological modeling. This is especially true for the construction of large-scale, high-precision 3D geological models at the urban level. Our research introduces a methodology for 3D geological modelling, with a particular focus on the dual-weighted interpolation technique for the integration of land-sea data and the establishment of a three-tiered coding system for bedrock layers. Focusing on Qingdao, a city characterized by its bedrock geology and situated along the eastern coastal region of China, our proposed method has successfully catalyzed the creation of models across four distinct scales: a comprehensive city-wide model covering an area of 11,282 square kilometers, five general models, two demonstration models, and five refined models. Further application cases have demonstrated that these models are not only capable of meeting the requirements of geological and geotechnical engineering across various scenarios, but also exhibit excellent interoperability and significant application potential when integrated with Building Information Modeling (BIM), Geographic Information Systems (GIS), and Internet of Things (IoT) technologies. The outcomes of this study are significant for the theoretical development and technological advancement of 3D geological modeling, and can also bring inspiration and reference to the work of 3D geological modeling in other areas.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"54 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frontiers | Construction and application of multi-scale costal bedrock urban 3D engineering geological models in Qingdao City of China\",\"authors\":\"Dong Ji, Jing Hou, Zhiliang Cheng, Shuai Wei, Yue Zhai, Wenhao Li\",\"doi\":\"10.3389/feart.2024.1435824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The 3D geological model serves as a cornerstone, establishing the essential foundation and prerequisite for numerical simulations, analytical assessments, and evaluative procedures that are integral to the disciplines of geotechnical and geological engineering. The task of integrating vast quantities of multi-source, heterogeneous modeling data, the absence of stratigraphic division standards to meet varying precision requirements, and addressing the application demands of 3D geological models beyond the geological domain, pose significant challenges to the endeavor of 3D geological modeling. This is especially true for the construction of large-scale, high-precision 3D geological models at the urban level. Our research introduces a methodology for 3D geological modelling, with a particular focus on the dual-weighted interpolation technique for the integration of land-sea data and the establishment of a three-tiered coding system for bedrock layers. Focusing on Qingdao, a city characterized by its bedrock geology and situated along the eastern coastal region of China, our proposed method has successfully catalyzed the creation of models across four distinct scales: a comprehensive city-wide model covering an area of 11,282 square kilometers, five general models, two demonstration models, and five refined models. Further application cases have demonstrated that these models are not only capable of meeting the requirements of geological and geotechnical engineering across various scenarios, but also exhibit excellent interoperability and significant application potential when integrated with Building Information Modeling (BIM), Geographic Information Systems (GIS), and Internet of Things (IoT) technologies. The outcomes of this study are significant for the theoretical development and technological advancement of 3D geological modeling, and can also bring inspiration and reference to the work of 3D geological modeling in other areas.\",\"PeriodicalId\":12359,\"journal\":{\"name\":\"Frontiers in Earth Science\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Earth Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3389/feart.2024.1435824\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3389/feart.2024.1435824","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Frontiers | Construction and application of multi-scale costal bedrock urban 3D engineering geological models in Qingdao City of China
The 3D geological model serves as a cornerstone, establishing the essential foundation and prerequisite for numerical simulations, analytical assessments, and evaluative procedures that are integral to the disciplines of geotechnical and geological engineering. The task of integrating vast quantities of multi-source, heterogeneous modeling data, the absence of stratigraphic division standards to meet varying precision requirements, and addressing the application demands of 3D geological models beyond the geological domain, pose significant challenges to the endeavor of 3D geological modeling. This is especially true for the construction of large-scale, high-precision 3D geological models at the urban level. Our research introduces a methodology for 3D geological modelling, with a particular focus on the dual-weighted interpolation technique for the integration of land-sea data and the establishment of a three-tiered coding system for bedrock layers. Focusing on Qingdao, a city characterized by its bedrock geology and situated along the eastern coastal region of China, our proposed method has successfully catalyzed the creation of models across four distinct scales: a comprehensive city-wide model covering an area of 11,282 square kilometers, five general models, two demonstration models, and five refined models. Further application cases have demonstrated that these models are not only capable of meeting the requirements of geological and geotechnical engineering across various scenarios, but also exhibit excellent interoperability and significant application potential when integrated with Building Information Modeling (BIM), Geographic Information Systems (GIS), and Internet of Things (IoT) technologies. The outcomes of this study are significant for the theoretical development and technological advancement of 3D geological modeling, and can also bring inspiration and reference to the work of 3D geological modeling in other areas.
期刊介绍:
Frontiers in Earth Science is an open-access journal that aims to bring together and publish on a single platform the best research dedicated to our planet.
This platform hosts the rapidly growing and continuously expanding domains in Earth Science, involving the lithosphere (including the geosciences spectrum), the hydrosphere (including marine geosciences and hydrology, complementing the existing Frontiers journal on Marine Science) and the atmosphere (including meteorology and climatology). As such, Frontiers in Earth Science focuses on the countless processes operating within and among the major spheres constituting our planet. In turn, the understanding of these processes provides the theoretical background to better use the available resources and to face the major environmental challenges (including earthquakes, tsunamis, eruptions, floods, landslides, climate changes, extreme meteorological events): this is where interdependent processes meet, requiring a holistic view to better live on and with our planet.
The journal welcomes outstanding contributions in any domain of Earth Science.
The open-access model developed by Frontiers offers a fast, efficient, timely and dynamic alternative to traditional publication formats. The journal has 20 specialty sections at the first tier, each acting as an independent journal with a full editorial board. The traditional peer-review process is adapted to guarantee fairness and efficiency using a thorough paperless process, with real-time author-reviewer-editor interactions, collaborative reviewer mandates to maximize quality, and reviewer disclosure after article acceptance. While maintaining a rigorous peer-review, this system allows for a process whereby accepted articles are published online on average 90 days after submission.
General Commentary articles as well as Book Reviews in Frontiers in Earth Science are only accepted upon invitation.