Bradley McCaskill, Yanbin Gong, Ziqiang Qin, Mohammad Sedghi, Mohammad Piri, Shehadeh Masalmeh
{"title":"混合-湿润多孔介质中两相流动的孔-孔放大:第一部分--无缝孔网提取","authors":"Bradley McCaskill, Yanbin Gong, Ziqiang Qin, Mohammad Sedghi, Mohammad Piri, Shehadeh Masalmeh","doi":"10.1007/s11242-024-02126-4","DOIUrl":null,"url":null,"abstract":"<p>We present a novel and efficient pore-network extraction (PNE) platform that utilizes a seamless merging algorithm to extract core-sized pore networks directly from high-resolution segmented micro-computed tomography images of rock samples. This platform has the distinct advantage of being parallel friendly, allowing the entire computational workload of the extraction process to be distributed across multiple compute nodes. The superior computational efficiency of this approach paves the way for the extraction of deterministic pore networks with physical dimensions that are comparable to those of core samples employed in conventional core-flooding experiments. Sensitivity analysis studies are performed on digital replicates of Berea and Bentheimer sandstone rock samples. To illustrate the role of a user-defined adjustment coefficient on the extraction process, a set of conventional-sized pore networks are extracted and analyzed for both rock samples. To ascertain the quality of these pore networks, comparisons are made with equivalent pore networks extracted using a well-characterized open-source pore-network extractor. After rigorous examination of these conventional-sized pore networks, the validated PNE platform is applied to extract miniature-core-sized pore networks, and their relevant statistics and petrophysical properties are presented. In addition, these networks are extensively utilized in both quasi-static and dynamic pore-network modeling (PNM) simulations of two-phase flow processes. The predicted two-phase flow properties of the rock samples are benchmarked against the corresponding experimental data and the results are presented in both the current and the second volume of this work.</p>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pore-to-Core Upscaling of Two-Phase Flow in Mixed-Wet Porous Media: Part I—Seamless Pore-Network Extraction\",\"authors\":\"Bradley McCaskill, Yanbin Gong, Ziqiang Qin, Mohammad Sedghi, Mohammad Piri, Shehadeh Masalmeh\",\"doi\":\"10.1007/s11242-024-02126-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a novel and efficient pore-network extraction (PNE) platform that utilizes a seamless merging algorithm to extract core-sized pore networks directly from high-resolution segmented micro-computed tomography images of rock samples. This platform has the distinct advantage of being parallel friendly, allowing the entire computational workload of the extraction process to be distributed across multiple compute nodes. The superior computational efficiency of this approach paves the way for the extraction of deterministic pore networks with physical dimensions that are comparable to those of core samples employed in conventional core-flooding experiments. Sensitivity analysis studies are performed on digital replicates of Berea and Bentheimer sandstone rock samples. To illustrate the role of a user-defined adjustment coefficient on the extraction process, a set of conventional-sized pore networks are extracted and analyzed for both rock samples. To ascertain the quality of these pore networks, comparisons are made with equivalent pore networks extracted using a well-characterized open-source pore-network extractor. After rigorous examination of these conventional-sized pore networks, the validated PNE platform is applied to extract miniature-core-sized pore networks, and their relevant statistics and petrophysical properties are presented. In addition, these networks are extensively utilized in both quasi-static and dynamic pore-network modeling (PNM) simulations of two-phase flow processes. The predicted two-phase flow properties of the rock samples are benchmarked against the corresponding experimental data and the results are presented in both the current and the second volume of this work.</p>\",\"PeriodicalId\":804,\"journal\":{\"name\":\"Transport in Porous Media\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport in Porous Media\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11242-024-02126-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11242-024-02126-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Pore-to-Core Upscaling of Two-Phase Flow in Mixed-Wet Porous Media: Part I—Seamless Pore-Network Extraction
We present a novel and efficient pore-network extraction (PNE) platform that utilizes a seamless merging algorithm to extract core-sized pore networks directly from high-resolution segmented micro-computed tomography images of rock samples. This platform has the distinct advantage of being parallel friendly, allowing the entire computational workload of the extraction process to be distributed across multiple compute nodes. The superior computational efficiency of this approach paves the way for the extraction of deterministic pore networks with physical dimensions that are comparable to those of core samples employed in conventional core-flooding experiments. Sensitivity analysis studies are performed on digital replicates of Berea and Bentheimer sandstone rock samples. To illustrate the role of a user-defined adjustment coefficient on the extraction process, a set of conventional-sized pore networks are extracted and analyzed for both rock samples. To ascertain the quality of these pore networks, comparisons are made with equivalent pore networks extracted using a well-characterized open-source pore-network extractor. After rigorous examination of these conventional-sized pore networks, the validated PNE platform is applied to extract miniature-core-sized pore networks, and their relevant statistics and petrophysical properties are presented. In addition, these networks are extensively utilized in both quasi-static and dynamic pore-network modeling (PNM) simulations of two-phase flow processes. The predicted two-phase flow properties of the rock samples are benchmarked against the corresponding experimental data and the results are presented in both the current and the second volume of this work.
期刊介绍:
-Publishes original research on physical, chemical, and biological aspects of transport in porous media-
Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)-
Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications-
Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes-
Expanded in 2007 from 12 to 15 issues per year.
Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).