{"title":"二维等温欧拉方程广义黎曼问题的自相似解","authors":"Wancheng Sheng, Yang Zhou","doi":"10.1007/s00021-024-00897-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a kind of classic generalized Riemann problem for 2-dimensional isothermal Euler equations for compressible gas dynamics is considered. The problem is the gas <span>\\((u_{0}, v_{0}, r_{0} \\mid x \\mid ^{\\beta })\\)</span> in the rectangular region expands into the vacuum. We construct the solution of the following form </p><div><div><span>$$\\begin{aligned} u=u(\\xi , \\eta ),\\ v=v(\\xi , \\eta ),\\ \\rho =t^{\\beta } \\varrho (\\xi , \\eta ),\\ \\xi =\\frac{x}{t},\\ \\eta =\\frac{y}{t}, \\end{aligned}$$</span></div></div><p>where <span>\\(\\rho \\)</span> and (<i>u</i>, <i>v</i>) denote the density and the velocity fields respectively, and <span>\\(u_{0}, v_{0}, r_{0}>0\\)</span> and <span>\\(\\beta \\in (-1,0) \\cup (0,+\\infty )\\)</span> are constants. The continuity of the self-similar solution depends on the value of <span>\\(\\beta \\)</span>. Under certain conditions, we get a weak solution with shock wave, which is necessarily generated initially and move apart along a plane. Furthermore, by the method of characteristic analysis, we explain the mechanism of the shock wave.\n</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Similar Solution of the Generalized Riemann Problem for Two-Dimensional Isothermal Euler Equations\",\"authors\":\"Wancheng Sheng, Yang Zhou\",\"doi\":\"10.1007/s00021-024-00897-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, a kind of classic generalized Riemann problem for 2-dimensional isothermal Euler equations for compressible gas dynamics is considered. The problem is the gas <span>\\\\((u_{0}, v_{0}, r_{0} \\\\mid x \\\\mid ^{\\\\beta })\\\\)</span> in the rectangular region expands into the vacuum. We construct the solution of the following form </p><div><div><span>$$\\\\begin{aligned} u=u(\\\\xi , \\\\eta ),\\\\ v=v(\\\\xi , \\\\eta ),\\\\ \\\\rho =t^{\\\\beta } \\\\varrho (\\\\xi , \\\\eta ),\\\\ \\\\xi =\\\\frac{x}{t},\\\\ \\\\eta =\\\\frac{y}{t}, \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(\\\\rho \\\\)</span> and (<i>u</i>, <i>v</i>) denote the density and the velocity fields respectively, and <span>\\\\(u_{0}, v_{0}, r_{0}>0\\\\)</span> and <span>\\\\(\\\\beta \\\\in (-1,0) \\\\cup (0,+\\\\infty )\\\\)</span> are constants. The continuity of the self-similar solution depends on the value of <span>\\\\(\\\\beta \\\\)</span>. Under certain conditions, we get a weak solution with shock wave, which is necessarily generated initially and move apart along a plane. Furthermore, by the method of characteristic analysis, we explain the mechanism of the shock wave.\\n</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-024-00897-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00897-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Self-Similar Solution of the Generalized Riemann Problem for Two-Dimensional Isothermal Euler Equations
In this paper, a kind of classic generalized Riemann problem for 2-dimensional isothermal Euler equations for compressible gas dynamics is considered. The problem is the gas \((u_{0}, v_{0}, r_{0} \mid x \mid ^{\beta })\) in the rectangular region expands into the vacuum. We construct the solution of the following form
where \(\rho \) and (u, v) denote the density and the velocity fields respectively, and \(u_{0}, v_{0}, r_{0}>0\) and \(\beta \in (-1,0) \cup (0,+\infty )\) are constants. The continuity of the self-similar solution depends on the value of \(\beta \). Under certain conditions, we get a weak solution with shock wave, which is necessarily generated initially and move apart along a plane. Furthermore, by the method of characteristic analysis, we explain the mechanism of the shock wave.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.