{"title":"用于黑洞拾取位置推荐的真实世界大规模蜂窝定位系统","authors":"Ruipeng Gao;Shuli Zhu;Lingkun Li;Xuyu Wang;Yuqin Jiang;Naiqiang Tan;Hua Chai;Peng Qi;Jiqiang Liu;Dan Tao","doi":"10.1109/TMC.2024.3453596","DOIUrl":null,"url":null,"abstract":"Indoor localization availability is still sporadic in industry, especially at the black-hole, i.e., there only exist cellular signals, no GPS or WiFi signals. Based on our 2-year observations at the DiDi ride-hailing platform in China, there are \n<inline-formula><tex-math>$ 68\\,\\text{k}$</tex-math></inline-formula>\n orders everyday created at black-hole. In this paper, we present \n<i>TransparentLoc</i>\n, a large-scale cellular localization system for pickup position recommendation of the DiDi platform. Specifically, we design a CNN model for real-time localization based on a crowdsourcing fingerprint set constructed by outdoor trajectories and abnormal cell tower detection. Then we leverage a DeepFM model to recommend an optimal pickup position for passengers. We share our 2-year experience with 50 million orders across 13 million devices in 4541 cities to address practical challenges including sparse cell towers, unbalanced user fingerprints, temporal variations, and abnormal cell towers in terms of four major service metrics, i.e., pickup position error, over-30-meters ratio, cancel ratio, and call ratio. The large-scale evaluations show that our system achieves a \n<inline-formula><tex-math>$ 0.54\\,\\text{m}$</tex-math></inline-formula>\n lower median pickup position error compared to the iOS built-in cellular localization system, regardless of environmental changes, smartphone brands/models, time, and cellular providers. Additionally, the over-30-meters ratio, cancel ratio, and call ratio have significant reductions of 0.88%, 0.88%, and 5.13%, respectively.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"23 12","pages":"15114-15131"},"PeriodicalIF":7.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-World Large-Scale Cellular Localization for Pickup Position Recommendation at Black-Hole\",\"authors\":\"Ruipeng Gao;Shuli Zhu;Lingkun Li;Xuyu Wang;Yuqin Jiang;Naiqiang Tan;Hua Chai;Peng Qi;Jiqiang Liu;Dan Tao\",\"doi\":\"10.1109/TMC.2024.3453596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indoor localization availability is still sporadic in industry, especially at the black-hole, i.e., there only exist cellular signals, no GPS or WiFi signals. Based on our 2-year observations at the DiDi ride-hailing platform in China, there are \\n<inline-formula><tex-math>$ 68\\\\,\\\\text{k}$</tex-math></inline-formula>\\n orders everyday created at black-hole. In this paper, we present \\n<i>TransparentLoc</i>\\n, a large-scale cellular localization system for pickup position recommendation of the DiDi platform. Specifically, we design a CNN model for real-time localization based on a crowdsourcing fingerprint set constructed by outdoor trajectories and abnormal cell tower detection. Then we leverage a DeepFM model to recommend an optimal pickup position for passengers. We share our 2-year experience with 50 million orders across 13 million devices in 4541 cities to address practical challenges including sparse cell towers, unbalanced user fingerprints, temporal variations, and abnormal cell towers in terms of four major service metrics, i.e., pickup position error, over-30-meters ratio, cancel ratio, and call ratio. The large-scale evaluations show that our system achieves a \\n<inline-formula><tex-math>$ 0.54\\\\,\\\\text{m}$</tex-math></inline-formula>\\n lower median pickup position error compared to the iOS built-in cellular localization system, regardless of environmental changes, smartphone brands/models, time, and cellular providers. Additionally, the over-30-meters ratio, cancel ratio, and call ratio have significant reductions of 0.88%, 0.88%, and 5.13%, respectively.\",\"PeriodicalId\":50389,\"journal\":{\"name\":\"IEEE Transactions on Mobile Computing\",\"volume\":\"23 12\",\"pages\":\"15114-15131\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10663915/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10663915/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Real-World Large-Scale Cellular Localization for Pickup Position Recommendation at Black-Hole
Indoor localization availability is still sporadic in industry, especially at the black-hole, i.e., there only exist cellular signals, no GPS or WiFi signals. Based on our 2-year observations at the DiDi ride-hailing platform in China, there are
$ 68\,\text{k}$
orders everyday created at black-hole. In this paper, we present
TransparentLoc
, a large-scale cellular localization system for pickup position recommendation of the DiDi platform. Specifically, we design a CNN model for real-time localization based on a crowdsourcing fingerprint set constructed by outdoor trajectories and abnormal cell tower detection. Then we leverage a DeepFM model to recommend an optimal pickup position for passengers. We share our 2-year experience with 50 million orders across 13 million devices in 4541 cities to address practical challenges including sparse cell towers, unbalanced user fingerprints, temporal variations, and abnormal cell towers in terms of four major service metrics, i.e., pickup position error, over-30-meters ratio, cancel ratio, and call ratio. The large-scale evaluations show that our system achieves a
$ 0.54\,\text{m}$
lower median pickup position error compared to the iOS built-in cellular localization system, regardless of environmental changes, smartphone brands/models, time, and cellular providers. Additionally, the over-30-meters ratio, cancel ratio, and call ratio have significant reductions of 0.88%, 0.88%, and 5.13%, respectively.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.