Qi Li, Zhonghua Guo, Jialong Li, Xiaojun Li, Bo Ban
{"title":"利用 PCWA-ResCNN 混合模型增强宁夏黄河流域的水质反演:来自 Landsat-8 数据的启示","authors":"Qi Li, Zhonghua Guo, Jialong Li, Xiaojun Li, Bo Ban","doi":"10.3390/app14188264","DOIUrl":null,"url":null,"abstract":"The real-time monitoring and evaluation of water quality provides a scientific basis for water resource management and promotes regional sustainable development. This study established a database using Landsat-8 satellite data and water quality data from the Ningxia Yellow River basin in China, spanning 2021 to 2023, and this paper proposes a custom residual convolutional neural network model with a hybrid attention mechanism, referred to as PCWA-ResCNN. The accuracy of the model in predicting turbidity, permanganate, ammonia nitrogen, and dissolved oxygen concentration was more than 95%. Compared to convolutional neural networks and long short-term memory models, this model performed better in predicting water quality parameters with significantly improved prediction performance. In terms of spatial distribution, the pollution degree in the middle reaches of the basin is relatively serious. However, the overall water quality is good, being mainly Class I and Class II water quality. The hybrid model established in this paper can better capture the complex nonlinear relationship between the observed values and the surface water reflectance, showing strong robustness. This model can be used for the water quality monitoring of complex inland rivers and lakes, and it can also provide effective support for relevant government departments to formulate scientific and reasonable water quality management policies.","PeriodicalId":8224,"journal":{"name":"Applied Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Water Quality Inversion in the Ningxia Yellow River Basin Using a Hybrid PCWA-ResCNN Model: Insights from Landsat-8 Data\",\"authors\":\"Qi Li, Zhonghua Guo, Jialong Li, Xiaojun Li, Bo Ban\",\"doi\":\"10.3390/app14188264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The real-time monitoring and evaluation of water quality provides a scientific basis for water resource management and promotes regional sustainable development. This study established a database using Landsat-8 satellite data and water quality data from the Ningxia Yellow River basin in China, spanning 2021 to 2023, and this paper proposes a custom residual convolutional neural network model with a hybrid attention mechanism, referred to as PCWA-ResCNN. The accuracy of the model in predicting turbidity, permanganate, ammonia nitrogen, and dissolved oxygen concentration was more than 95%. Compared to convolutional neural networks and long short-term memory models, this model performed better in predicting water quality parameters with significantly improved prediction performance. In terms of spatial distribution, the pollution degree in the middle reaches of the basin is relatively serious. However, the overall water quality is good, being mainly Class I and Class II water quality. The hybrid model established in this paper can better capture the complex nonlinear relationship between the observed values and the surface water reflectance, showing strong robustness. This model can be used for the water quality monitoring of complex inland rivers and lakes, and it can also provide effective support for relevant government departments to formulate scientific and reasonable water quality management policies.\",\"PeriodicalId\":8224,\"journal\":{\"name\":\"Applied Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/app14188264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/app14188264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Enhanced Water Quality Inversion in the Ningxia Yellow River Basin Using a Hybrid PCWA-ResCNN Model: Insights from Landsat-8 Data
The real-time monitoring and evaluation of water quality provides a scientific basis for water resource management and promotes regional sustainable development. This study established a database using Landsat-8 satellite data and water quality data from the Ningxia Yellow River basin in China, spanning 2021 to 2023, and this paper proposes a custom residual convolutional neural network model with a hybrid attention mechanism, referred to as PCWA-ResCNN. The accuracy of the model in predicting turbidity, permanganate, ammonia nitrogen, and dissolved oxygen concentration was more than 95%. Compared to convolutional neural networks and long short-term memory models, this model performed better in predicting water quality parameters with significantly improved prediction performance. In terms of spatial distribution, the pollution degree in the middle reaches of the basin is relatively serious. However, the overall water quality is good, being mainly Class I and Class II water quality. The hybrid model established in this paper can better capture the complex nonlinear relationship between the observed values and the surface water reflectance, showing strong robustness. This model can be used for the water quality monitoring of complex inland rivers and lakes, and it can also provide effective support for relevant government departments to formulate scientific and reasonable water quality management policies.
期刊介绍:
APPS is an international journal. APPS covers a wide spectrum of pure and applied mathematics in science and technology, promoting especially papers presented at Carpato-Balkan meetings. The Editorial Board of APPS takes a very active role in selecting and refereeing papers, ensuring the best quality of contemporary mathematics and its applications. APPS is abstracted in Zentralblatt für Mathematik. The APPS journal uses Double blind peer review.