方位太阳同步和空气动力神经优化:用于太阳能无人飞行器航程优化的 Slime-Mold 激励型神经网络实证研究

Q1 Mathematics Applied Sciences Pub Date : 2024-09-13 DOI:10.3390/app14188265
Graheeth Hazare, Mohamed Thariq Hameed Sultan, Dariusz Mika, Farah Syazwani Shahar, Grzegorz Skorulski, Marek Nowakowski, Andriy Holovatyy, Ile Mircheski, Wojciech Giernacki
{"title":"方位太阳同步和空气动力神经优化:用于太阳能无人飞行器航程优化的 Slime-Mold 激励型神经网络实证研究","authors":"Graheeth Hazare, Mohamed Thariq Hameed Sultan, Dariusz Mika, Farah Syazwani Shahar, Grzegorz Skorulski, Marek Nowakowski, Andriy Holovatyy, Ile Mircheski, Wojciech Giernacki","doi":"10.3390/app14188265","DOIUrl":null,"url":null,"abstract":"This study introduces a novel methodology for enhancing the efficiency of solar-powered unmanned aerial vehicles (UAVs) through azimuthal solar synchronization and aerodynamic neuro-optimization, leveraging the principles of slime mold neural networks. The objective is to broaden the operational capabilities of solar UAVs, enabling them to perform over extended ranges and in varied weather conditions. Our approach integrates a computational model of slime mold networks with a simulation environment to optimize both the solar energy collection and the aerodynamic performance of UAVs. Specifically, we focus on improving the UAVs’ aerodynamic efficiency in flight, aligning it with energy optimization strategies to ensure sustained operation. The findings demonstrated significant improvements in the UAVs’ range and weather resilience, thereby enhancing their utility for a variety of missions, including environmental monitoring and search and rescue operations. These advancements underscore the potential of integrating biomimicry and neural-network-based optimization in expanding the functional scope of solar UAVs.","PeriodicalId":8224,"journal":{"name":"Applied Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Azimuthal Solar Synchronization and Aerodynamic Neuro-Optimization: An Empirical Study on Slime-Mold-Inspired Neural Networks for Solar UAV Range Optimization\",\"authors\":\"Graheeth Hazare, Mohamed Thariq Hameed Sultan, Dariusz Mika, Farah Syazwani Shahar, Grzegorz Skorulski, Marek Nowakowski, Andriy Holovatyy, Ile Mircheski, Wojciech Giernacki\",\"doi\":\"10.3390/app14188265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduces a novel methodology for enhancing the efficiency of solar-powered unmanned aerial vehicles (UAVs) through azimuthal solar synchronization and aerodynamic neuro-optimization, leveraging the principles of slime mold neural networks. The objective is to broaden the operational capabilities of solar UAVs, enabling them to perform over extended ranges and in varied weather conditions. Our approach integrates a computational model of slime mold networks with a simulation environment to optimize both the solar energy collection and the aerodynamic performance of UAVs. Specifically, we focus on improving the UAVs’ aerodynamic efficiency in flight, aligning it with energy optimization strategies to ensure sustained operation. The findings demonstrated significant improvements in the UAVs’ range and weather resilience, thereby enhancing their utility for a variety of missions, including environmental monitoring and search and rescue operations. These advancements underscore the potential of integrating biomimicry and neural-network-based optimization in expanding the functional scope of solar UAVs.\",\"PeriodicalId\":8224,\"journal\":{\"name\":\"Applied Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/app14188265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/app14188265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种新方法,利用粘菌神经网络原理,通过方位太阳同步和空气动力神经优化,提高太阳能无人飞行器(UAV)的效率。我们的目标是拓宽太阳能无人飞行器的作战能力,使其能够在各种天气条件下进行远距离飞行。我们的方法将粘菌网络计算模型与仿真环境相结合,以优化无人机的太阳能收集和空气动力性能。具体来说,我们的重点是提高无人飞行器在飞行过程中的空气动力效率,并将其与能源优化策略相结合,以确保持续运行。研究结果表明,无人机的航程和天气适应能力有了显著提高,从而增强了其在环境监测和搜救行动等各种任务中的实用性。这些进步凸显了将生物仿生学和基于神经网络的优化相结合,扩大太阳能无人机功能范围的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Azimuthal Solar Synchronization and Aerodynamic Neuro-Optimization: An Empirical Study on Slime-Mold-Inspired Neural Networks for Solar UAV Range Optimization
This study introduces a novel methodology for enhancing the efficiency of solar-powered unmanned aerial vehicles (UAVs) through azimuthal solar synchronization and aerodynamic neuro-optimization, leveraging the principles of slime mold neural networks. The objective is to broaden the operational capabilities of solar UAVs, enabling them to perform over extended ranges and in varied weather conditions. Our approach integrates a computational model of slime mold networks with a simulation environment to optimize both the solar energy collection and the aerodynamic performance of UAVs. Specifically, we focus on improving the UAVs’ aerodynamic efficiency in flight, aligning it with energy optimization strategies to ensure sustained operation. The findings demonstrated significant improvements in the UAVs’ range and weather resilience, thereby enhancing their utility for a variety of missions, including environmental monitoring and search and rescue operations. These advancements underscore the potential of integrating biomimicry and neural-network-based optimization in expanding the functional scope of solar UAVs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Sciences
Applied Sciences Mathematics-Applied Mathematics
CiteScore
6.40
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊介绍: APPS is an international journal. APPS covers a wide spectrum of pure and applied mathematics in science and technology, promoting especially papers presented at Carpato-Balkan meetings. The Editorial Board of APPS takes a very active role in selecting and refereeing papers, ensuring the best quality of contemporary mathematics and its applications. APPS is abstracted in Zentralblatt für Mathematik. The APPS journal uses Double blind peer review.
期刊最新文献
The Effectiveness of Exercise Programs on Balance, Functional Ability, Quality of Life, and Depression in Progressive Supranuclear Palsy: A Case Study Application of Historical Comprehensive Multimodal Transportation Data for Testing the Commuting Time Paradox: Evidence from the Portland, OR Region Real-Time Optimization of Ancillary Service Allocation in Renewable Energy Microgrids Using Virtual Load Exploring the Association between Pro-Inflammation and the Early Diagnosis of Alzheimer’s Disease in Buccal Cells Using Immunocytochemistry and Machine Learning Techniques HumanEnerg Hotspot: Conceptual Design of an Agile Toolkit for Human Energy Reinforcement in Industry 5.0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1