Honglin Yan, Guanghui Du, Wentao Gao, Yanhong Chen, Cunlong Cui, Kai Xu
{"title":"基于子空间和序列策略的高速永磁电机多物理场优化","authors":"Honglin Yan, Guanghui Du, Wentao Gao, Yanhong Chen, Cunlong Cui, Kai Xu","doi":"10.3390/app14188267","DOIUrl":null,"url":null,"abstract":"In the optimization of high-speed permanent magnet motors (HSPMMs), electromagnetic characteristics, rotor stress, rotor dynamics, and temperature characteristics must all be considered simultaneously, and there are numerous optimization parameters for both the stator and rotor. These factors pose significant challenges to the multiphysics optimization of HSPMMs. Therefore, this paper presents a multiphysics optimization process for the HSPMM of 60 kW 30,000 rpm by combining subspace strategy and sequential strategy to mitigate the issues of high training volume and mutual coupling. Ten optimization parameters of stator and rotor are determined firstly. Then, using finite element analysis of rotor stress and rotor dynamics, the range of values for critical parameters of the rotor is established. Next, in the electromagnetic optimization, the process is divided into rotor parameter subspace and stator parameter subspace according to the subspace optimization strategy. The temperature field is also checked based on the optimization results. Finally, a prototype is manufactured and the comprehensive performance is tested to validate the multiphysics optimization process.","PeriodicalId":8224,"journal":{"name":"Applied Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiphysics Optimization of a High-Speed Permanent Magnet Motor Based on Subspace and Sequential Strategy\",\"authors\":\"Honglin Yan, Guanghui Du, Wentao Gao, Yanhong Chen, Cunlong Cui, Kai Xu\",\"doi\":\"10.3390/app14188267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the optimization of high-speed permanent magnet motors (HSPMMs), electromagnetic characteristics, rotor stress, rotor dynamics, and temperature characteristics must all be considered simultaneously, and there are numerous optimization parameters for both the stator and rotor. These factors pose significant challenges to the multiphysics optimization of HSPMMs. Therefore, this paper presents a multiphysics optimization process for the HSPMM of 60 kW 30,000 rpm by combining subspace strategy and sequential strategy to mitigate the issues of high training volume and mutual coupling. Ten optimization parameters of stator and rotor are determined firstly. Then, using finite element analysis of rotor stress and rotor dynamics, the range of values for critical parameters of the rotor is established. Next, in the electromagnetic optimization, the process is divided into rotor parameter subspace and stator parameter subspace according to the subspace optimization strategy. The temperature field is also checked based on the optimization results. Finally, a prototype is manufactured and the comprehensive performance is tested to validate the multiphysics optimization process.\",\"PeriodicalId\":8224,\"journal\":{\"name\":\"Applied Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/app14188267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/app14188267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Multiphysics Optimization of a High-Speed Permanent Magnet Motor Based on Subspace and Sequential Strategy
In the optimization of high-speed permanent magnet motors (HSPMMs), electromagnetic characteristics, rotor stress, rotor dynamics, and temperature characteristics must all be considered simultaneously, and there are numerous optimization parameters for both the stator and rotor. These factors pose significant challenges to the multiphysics optimization of HSPMMs. Therefore, this paper presents a multiphysics optimization process for the HSPMM of 60 kW 30,000 rpm by combining subspace strategy and sequential strategy to mitigate the issues of high training volume and mutual coupling. Ten optimization parameters of stator and rotor are determined firstly. Then, using finite element analysis of rotor stress and rotor dynamics, the range of values for critical parameters of the rotor is established. Next, in the electromagnetic optimization, the process is divided into rotor parameter subspace and stator parameter subspace according to the subspace optimization strategy. The temperature field is also checked based on the optimization results. Finally, a prototype is manufactured and the comprehensive performance is tested to validate the multiphysics optimization process.
期刊介绍:
APPS is an international journal. APPS covers a wide spectrum of pure and applied mathematics in science and technology, promoting especially papers presented at Carpato-Balkan meetings. The Editorial Board of APPS takes a very active role in selecting and refereeing papers, ensuring the best quality of contemporary mathematics and its applications. APPS is abstracted in Zentralblatt für Mathematik. The APPS journal uses Double blind peer review.