{"title":"研究寒冷气候条件下使用电阻加热器的铁路道岔热量分布","authors":"Arefeh Lotfi, Adeel Yousuf, Muhammad Shakeel Virk","doi":"10.3390/app14188151","DOIUrl":null,"url":null,"abstract":"The railway is an essential source of logistics and transportation in cold regions, but low temperatures and icing can be challenging for uninterrupted railway operations in these regions. Icing on railway switches is a safety hazard, and presently, one of the industry’s adaptive approaches for ice mitigation is the use of resistive heaters. This method is efficient but consumes a great amount of electricity, leading to high financial costs in terms of the operation and maintenance of railway tracks in ice-prone regions. In this paper, a study is carried out using experiments and computational simulations to analyze the heat distribution in a cross-section of a rail at below-freezing temperatures. Experiments are performed in a cold room using an actual rail switch, thermocouples, and infrared imaging, while numerical analyses are carried out using a MATLAB-based analytical model to simulate the heat transfer, considering a section of stock rail and a heating element. Results show a considerable loss of heat from the heater to the surroundings of the rail, especially towards the ground ballast. Numerical simulation results provide a good insight into heat transfer along railway sections, and results are validated with experiments, where a good agreement is found. This study provides a good base for further optimization of resistive heating operations for ice mitigation along railway switches.","PeriodicalId":8224,"journal":{"name":"Applied Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Heat Distribution in Railway Switch Using Resistive Heater in Cold Climate Conditions\",\"authors\":\"Arefeh Lotfi, Adeel Yousuf, Muhammad Shakeel Virk\",\"doi\":\"10.3390/app14188151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The railway is an essential source of logistics and transportation in cold regions, but low temperatures and icing can be challenging for uninterrupted railway operations in these regions. Icing on railway switches is a safety hazard, and presently, one of the industry’s adaptive approaches for ice mitigation is the use of resistive heaters. This method is efficient but consumes a great amount of electricity, leading to high financial costs in terms of the operation and maintenance of railway tracks in ice-prone regions. In this paper, a study is carried out using experiments and computational simulations to analyze the heat distribution in a cross-section of a rail at below-freezing temperatures. Experiments are performed in a cold room using an actual rail switch, thermocouples, and infrared imaging, while numerical analyses are carried out using a MATLAB-based analytical model to simulate the heat transfer, considering a section of stock rail and a heating element. Results show a considerable loss of heat from the heater to the surroundings of the rail, especially towards the ground ballast. Numerical simulation results provide a good insight into heat transfer along railway sections, and results are validated with experiments, where a good agreement is found. This study provides a good base for further optimization of resistive heating operations for ice mitigation along railway switches.\",\"PeriodicalId\":8224,\"journal\":{\"name\":\"Applied Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/app14188151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/app14188151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Study of Heat Distribution in Railway Switch Using Resistive Heater in Cold Climate Conditions
The railway is an essential source of logistics and transportation in cold regions, but low temperatures and icing can be challenging for uninterrupted railway operations in these regions. Icing on railway switches is a safety hazard, and presently, one of the industry’s adaptive approaches for ice mitigation is the use of resistive heaters. This method is efficient but consumes a great amount of electricity, leading to high financial costs in terms of the operation and maintenance of railway tracks in ice-prone regions. In this paper, a study is carried out using experiments and computational simulations to analyze the heat distribution in a cross-section of a rail at below-freezing temperatures. Experiments are performed in a cold room using an actual rail switch, thermocouples, and infrared imaging, while numerical analyses are carried out using a MATLAB-based analytical model to simulate the heat transfer, considering a section of stock rail and a heating element. Results show a considerable loss of heat from the heater to the surroundings of the rail, especially towards the ground ballast. Numerical simulation results provide a good insight into heat transfer along railway sections, and results are validated with experiments, where a good agreement is found. This study provides a good base for further optimization of resistive heating operations for ice mitigation along railway switches.
期刊介绍:
APPS is an international journal. APPS covers a wide spectrum of pure and applied mathematics in science and technology, promoting especially papers presented at Carpato-Balkan meetings. The Editorial Board of APPS takes a very active role in selecting and refereeing papers, ensuring the best quality of contemporary mathematics and its applications. APPS is abstracted in Zentralblatt für Mathematik. The APPS journal uses Double blind peer review.