Nicola Allison, Phoebe Ross, Cristina Castillo Alvarez, Kirsty Penkman, Roland Kröger, Celeste Kellock, Catherine Cole, Matthieu Clog, David Evans, Chris Hintz, Ken Hintz, Adrian A. Finch
{"title":"海水 pCO2 和温度对珊瑚骨骼氨基酸组成和文石 CO3 紊乱的影响","authors":"Nicola Allison, Phoebe Ross, Cristina Castillo Alvarez, Kirsty Penkman, Roland Kröger, Celeste Kellock, Catherine Cole, Matthieu Clog, David Evans, Chris Hintz, Ken Hintz, Adrian A. Finch","doi":"10.1007/s00338-024-02539-z","DOIUrl":null,"url":null,"abstract":"<p>Coral skeletons are composites of aragonite and biomolecules. We report the concentrations of 11 amino acids in massive <i>Porites</i> spp. coral skeletons cultured at two temperatures (25 °C and 28 °C) and 3 seawater pCO<sub>2</sub> (180, 400 and 750 µatm). Coral skeletal aspartic acid/asparagine (Asx), glutamic acid/glutamine (Glx), glycine, serine and total amino acid concentrations are significantly higher at 28 °C than at 25 °C. Skeletal Asx, Glx, Gly, Ser, Ala, L-Thr and total amino acid are significantly lower at 180 µatm seawater pCO<sub>2</sub> compared to 400 µatm, and Ser is reduced at 180 µatm compared to 750 µatm. Concentrations of all skeletal amino acids are significantly inversely related to coral calcification rate but not to calcification media pH. Raman spectroscopy of these and additional specimens indicates that CO<sub>3</sub> disorder in the skeletal aragonite lattice is not affected by seawater pCO<sub>2</sub> but decreases at the higher temperature. This is contrary to observations in synthetic aragonite where disorder is positively related to the aragonite precipitation rate mediated by either increasing temperature (this study) or increasing <i>Ω</i> (this study and a previous report) and to the concentration of amino acid in the precipitation media (a previous report). We observe no significant relationship between structural disorder and coral calcification rate or skeletal [amino acid]. Both temperature and seawater pCO<sub>2</sub> can significantly affect skeletal amino acid composition, and further work is required to clarify how environmental change mediates disorder.</p>","PeriodicalId":10821,"journal":{"name":"Coral Reefs","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of seawater pCO2 and temperature on the amino acid composition and aragonite CO3 disorder of coral skeletons\",\"authors\":\"Nicola Allison, Phoebe Ross, Cristina Castillo Alvarez, Kirsty Penkman, Roland Kröger, Celeste Kellock, Catherine Cole, Matthieu Clog, David Evans, Chris Hintz, Ken Hintz, Adrian A. Finch\",\"doi\":\"10.1007/s00338-024-02539-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Coral skeletons are composites of aragonite and biomolecules. We report the concentrations of 11 amino acids in massive <i>Porites</i> spp. coral skeletons cultured at two temperatures (25 °C and 28 °C) and 3 seawater pCO<sub>2</sub> (180, 400 and 750 µatm). Coral skeletal aspartic acid/asparagine (Asx), glutamic acid/glutamine (Glx), glycine, serine and total amino acid concentrations are significantly higher at 28 °C than at 25 °C. Skeletal Asx, Glx, Gly, Ser, Ala, L-Thr and total amino acid are significantly lower at 180 µatm seawater pCO<sub>2</sub> compared to 400 µatm, and Ser is reduced at 180 µatm compared to 750 µatm. Concentrations of all skeletal amino acids are significantly inversely related to coral calcification rate but not to calcification media pH. Raman spectroscopy of these and additional specimens indicates that CO<sub>3</sub> disorder in the skeletal aragonite lattice is not affected by seawater pCO<sub>2</sub> but decreases at the higher temperature. This is contrary to observations in synthetic aragonite where disorder is positively related to the aragonite precipitation rate mediated by either increasing temperature (this study) or increasing <i>Ω</i> (this study and a previous report) and to the concentration of amino acid in the precipitation media (a previous report). We observe no significant relationship between structural disorder and coral calcification rate or skeletal [amino acid]. Both temperature and seawater pCO<sub>2</sub> can significantly affect skeletal amino acid composition, and further work is required to clarify how environmental change mediates disorder.</p>\",\"PeriodicalId\":10821,\"journal\":{\"name\":\"Coral Reefs\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coral Reefs\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00338-024-02539-z\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coral Reefs","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00338-024-02539-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
The influence of seawater pCO2 and temperature on the amino acid composition and aragonite CO3 disorder of coral skeletons
Coral skeletons are composites of aragonite and biomolecules. We report the concentrations of 11 amino acids in massive Porites spp. coral skeletons cultured at two temperatures (25 °C and 28 °C) and 3 seawater pCO2 (180, 400 and 750 µatm). Coral skeletal aspartic acid/asparagine (Asx), glutamic acid/glutamine (Glx), glycine, serine and total amino acid concentrations are significantly higher at 28 °C than at 25 °C. Skeletal Asx, Glx, Gly, Ser, Ala, L-Thr and total amino acid are significantly lower at 180 µatm seawater pCO2 compared to 400 µatm, and Ser is reduced at 180 µatm compared to 750 µatm. Concentrations of all skeletal amino acids are significantly inversely related to coral calcification rate but not to calcification media pH. Raman spectroscopy of these and additional specimens indicates that CO3 disorder in the skeletal aragonite lattice is not affected by seawater pCO2 but decreases at the higher temperature. This is contrary to observations in synthetic aragonite where disorder is positively related to the aragonite precipitation rate mediated by either increasing temperature (this study) or increasing Ω (this study and a previous report) and to the concentration of amino acid in the precipitation media (a previous report). We observe no significant relationship between structural disorder and coral calcification rate or skeletal [amino acid]. Both temperature and seawater pCO2 can significantly affect skeletal amino acid composition, and further work is required to clarify how environmental change mediates disorder.
期刊介绍:
Coral Reefs, the Journal of the International Coral Reef Society, presents multidisciplinary literature across the broad fields of reef studies, publishing analytical and theoretical papers on both modern and ancient reefs. These encourage the search for theories about reef structure and dynamics, and the use of experimentation, modeling, quantification and the applied sciences.
Coverage includes such subject areas as population dynamics; community ecology of reef organisms; energy and nutrient flows; biogeochemical cycles; physiology of calcification; reef responses to natural and anthropogenic influences; stress markers in reef organisms; behavioural ecology; sedimentology; diagenesis; reef structure and morphology; evolutionary ecology of the reef biota; palaeoceanography of coral reefs and coral islands; reef management and its underlying disciplines; molecular biology and genetics of coral; aetiology of disease in reef-related organisms; reef responses to global change, and more.