先验概率信息对放射诊断中大语言模型性能的影响

Takahiro Fukushima, Ryo Kurokawa, Akifumi Hagiwara, Yuki Sonoda, Yusuke Asari, Mariko Kurokawa, Jun Kanzawa, Wataru Gonoi, Osamu Abe
{"title":"先验概率信息对放射诊断中大语言模型性能的影响","authors":"Takahiro Fukushima, Ryo Kurokawa, Akifumi Hagiwara, Yuki Sonoda, Yusuke Asari, Mariko Kurokawa, Jun Kanzawa, Wataru Gonoi, Osamu Abe","doi":"10.1101/2024.08.27.24312693","DOIUrl":null,"url":null,"abstract":"<strong>Background</strong> Large language models (LLMs) show promise in radiological diagnosis, but their performance may be affected by the context of the cases presented.","PeriodicalId":501358,"journal":{"name":"medRxiv - Radiology and Imaging","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Prior Probability Information on Large Language Model Performance in Radiological Diagnosis\",\"authors\":\"Takahiro Fukushima, Ryo Kurokawa, Akifumi Hagiwara, Yuki Sonoda, Yusuke Asari, Mariko Kurokawa, Jun Kanzawa, Wataru Gonoi, Osamu Abe\",\"doi\":\"10.1101/2024.08.27.24312693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Background</strong> Large language models (LLMs) show promise in radiological diagnosis, but their performance may be affected by the context of the cases presented.\",\"PeriodicalId\":501358,\"journal\":{\"name\":\"medRxiv - Radiology and Imaging\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Radiology and Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.27.24312693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Radiology and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.27.24312693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景大语言模型(LLM)在放射学诊断中大有可为,但其性能可能会受到病例背景的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of Prior Probability Information on Large Language Model Performance in Radiological Diagnosis
Background Large language models (LLMs) show promise in radiological diagnosis, but their performance may be affected by the context of the cases presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Auto-segmentation of hemi-diaphragms in free-breathing dynamic MRI of pediatric subjects with thoracic insufficiency syndrome Dynamic MR of muscle contraction during electrical muscle stimulation as a potential diagnostic tool for neuromuscular disease Deriving Imaging Biomarkers for Primary Central Nervous System Lymphoma Using Deep Learning Exploring subthreshold functional network alterations in women with phenylketonuria by higher criticism Beyond Algorithms: The Impact of Simplified CNN Models and Multifactorial Influences on Radiological Image Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1