PNBACE:预测突变对蛋白质-核酸结合亲和力影响的集合算法

IF 4.4 1区 生物学 Q1 BIOLOGY BMC Biology Pub Date : 2024-09-11 DOI:10.1186/s12915-024-02006-9
Si-Rui Xiao, Yao-Kun Zhang, Kai-Yu Liu, Yu-Xiang Huang, Rong Liu
{"title":"PNBACE:预测突变对蛋白质-核酸结合亲和力影响的集合算法","authors":"Si-Rui Xiao, Yao-Kun Zhang, Kai-Yu Liu, Yu-Xiang Huang, Rong Liu","doi":"10.1186/s12915-024-02006-9","DOIUrl":null,"url":null,"abstract":"Mutations occurring in nucleic acids or proteins may affect the binding affinities of protein-nucleic acid interactions. Although many efforts have been devoted to the impact of protein mutations, few computational studies have addressed the effect of nucleic acid mutations and explored whether the identical methodology could be applied to the prediction of binding affinity changes caused by these two mutation types. Here, we developed a generalized algorithm named PNBACE for both DNA and protein mutations. We first demonstrated that DNA mutations could induce varying degrees of changes in binding affinity from multiple perspectives. We then designed a group of energy-based topological features based on different energy networks, which were combined with our previous partition-based energy features to construct individual prediction models through feature selections. Furthermore, we created an ensemble model by integrating the outputs of individual models using a differential evolution algorithm. In addition to predicting the impact of single-point mutations, PNBACE could predict the influence of multiple-point mutations and identify mutations significantly reducing binding affinities. Extensive comparisons indicated that PNBACE largely performed better than existing methods on both regression and classification tasks. PNBACE is an effective method for estimating the binding affinity changes of protein-nucleic acid complexes induced by DNA or protein mutations, therefore improving our understanding of the interactions between proteins and DNA/RNA.","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PNBACE: an ensemble algorithm to predict the effects of mutations on protein-nucleic acid binding affinity\",\"authors\":\"Si-Rui Xiao, Yao-Kun Zhang, Kai-Yu Liu, Yu-Xiang Huang, Rong Liu\",\"doi\":\"10.1186/s12915-024-02006-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mutations occurring in nucleic acids or proteins may affect the binding affinities of protein-nucleic acid interactions. Although many efforts have been devoted to the impact of protein mutations, few computational studies have addressed the effect of nucleic acid mutations and explored whether the identical methodology could be applied to the prediction of binding affinity changes caused by these two mutation types. Here, we developed a generalized algorithm named PNBACE for both DNA and protein mutations. We first demonstrated that DNA mutations could induce varying degrees of changes in binding affinity from multiple perspectives. We then designed a group of energy-based topological features based on different energy networks, which were combined with our previous partition-based energy features to construct individual prediction models through feature selections. Furthermore, we created an ensemble model by integrating the outputs of individual models using a differential evolution algorithm. In addition to predicting the impact of single-point mutations, PNBACE could predict the influence of multiple-point mutations and identify mutations significantly reducing binding affinities. Extensive comparisons indicated that PNBACE largely performed better than existing methods on both regression and classification tasks. PNBACE is an effective method for estimating the binding affinity changes of protein-nucleic acid complexes induced by DNA or protein mutations, therefore improving our understanding of the interactions between proteins and DNA/RNA.\",\"PeriodicalId\":9339,\"journal\":{\"name\":\"BMC Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12915-024-02006-9\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-024-02006-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

核酸或蛋白质中发生的突变可能会影响蛋白质-核酸相互作用的结合亲和力。尽管很多人致力于研究蛋白质突变的影响,但很少有计算研究涉及核酸突变的影响,并探讨是否可以将相同的方法应用于预测这两种突变类型引起的结合亲和力变化。在此,我们开发了一种名为 PNBACE 的通用算法,同时适用于 DNA 和蛋白质突变。我们首先从多个角度证明了 DNA 突变会引起不同程度的结合亲和力变化。然后,我们根据不同的能量网络设计了一组基于能量的拓扑特征,并将其与之前基于分区的能量特征相结合,通过特征选择构建了个体预测模型。此外,我们还利用差分进化算法整合了各个模型的输出结果,从而创建了一个集合模型。除了预测单点突变的影响外,PNBACE 还能预测多点突变的影响,并识别显著降低结合亲和力的突变。广泛的比较表明,在回归和分类任务中,PNBACE 的表现在很大程度上优于现有方法。PNBACE 是一种估算 DNA 或蛋白质突变引起的蛋白质-核酸复合物结合亲和力变化的有效方法,从而提高了我们对蛋白质与 DNA/RNA 之间相互作用的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PNBACE: an ensemble algorithm to predict the effects of mutations on protein-nucleic acid binding affinity
Mutations occurring in nucleic acids or proteins may affect the binding affinities of protein-nucleic acid interactions. Although many efforts have been devoted to the impact of protein mutations, few computational studies have addressed the effect of nucleic acid mutations and explored whether the identical methodology could be applied to the prediction of binding affinity changes caused by these two mutation types. Here, we developed a generalized algorithm named PNBACE for both DNA and protein mutations. We first demonstrated that DNA mutations could induce varying degrees of changes in binding affinity from multiple perspectives. We then designed a group of energy-based topological features based on different energy networks, which were combined with our previous partition-based energy features to construct individual prediction models through feature selections. Furthermore, we created an ensemble model by integrating the outputs of individual models using a differential evolution algorithm. In addition to predicting the impact of single-point mutations, PNBACE could predict the influence of multiple-point mutations and identify mutations significantly reducing binding affinities. Extensive comparisons indicated that PNBACE largely performed better than existing methods on both regression and classification tasks. PNBACE is an effective method for estimating the binding affinity changes of protein-nucleic acid complexes induced by DNA or protein mutations, therefore improving our understanding of the interactions between proteins and DNA/RNA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Biology
BMC Biology 生物-生物学
CiteScore
7.80
自引率
1.90%
发文量
260
审稿时长
3 months
期刊介绍: BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.
期刊最新文献
Novel function of single-target regulator NorR involved in swarming motility and biofilm formation revealed in Vibrio alginolyticus. Hibernation reduces GABA signaling in the brainstem to enhance motor activity of breathing at cool temperatures. A powerful and versatile new fixation protocol for immunostaining and in situ hybridization that preserves delicate tissues. Bridging chemical structure and conceptual knowledge enables accurate prediction of compound-protein interaction. Evolutionary divergent clusters of transcribed extinct truncated retroposons drive low mRNA expression and developmental regulation in the protozoan Leishmania.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1