相信直觉比较人类和机器对噪声可视化的推断

Ratanond Koonchanok;Michael E. Papka;Khairi Reda
{"title":"相信直觉比较人类和机器对噪声可视化的推断","authors":"Ratanond Koonchanok;Michael E. Papka;Khairi Reda","doi":"10.1109/TVCG.2024.3456182","DOIUrl":null,"url":null,"abstract":"People commonly utilize visualizations not only to examine a given dataset, but also to draw generalizable conclusions about the underlying models or phenomena. Prior research has compared human visual inference to that of an optimal Bayesian agent, with deviations from rational analysis viewed as problematic. However, human reliance on non-normative heuristics may prove advantageous in certain circumstances. We investigate scenarios where human intuition might surpass idealized statistical rationality. In two experiments, we examine individuals' accuracy in characterizing the parameters of known data-generating models from bivariate visualizations. Our findings indicate that, although participants generally exhibited lower accuracy compared to statistical models, they frequently outperformed Bayesian agents, particularly when faced with extreme samples. Participants appeared to rely on their internal models to filter out noisy visualizations, thus improving their resilience against spurious data. However, participants displayed overconfidence and struggled with uncertainty estimation. They also exhibited higher variance than statistical machines. Our findings suggest that analyst gut reactions to visualizations may provide an advantage, even when departing from rationality. These results carry implications for designing visual analytics tools, offering new perspectives on how to integrate statistical models and analyst intuition for improved inference and decision-making. The data and materials for this paper are available at https://osf.io/qmfv6","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"31 1","pages":"754-764"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trust Your Gut: Comparing Human and Machine Inference from Noisy Visualizations\",\"authors\":\"Ratanond Koonchanok;Michael E. Papka;Khairi Reda\",\"doi\":\"10.1109/TVCG.2024.3456182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"People commonly utilize visualizations not only to examine a given dataset, but also to draw generalizable conclusions about the underlying models or phenomena. Prior research has compared human visual inference to that of an optimal Bayesian agent, with deviations from rational analysis viewed as problematic. However, human reliance on non-normative heuristics may prove advantageous in certain circumstances. We investigate scenarios where human intuition might surpass idealized statistical rationality. In two experiments, we examine individuals' accuracy in characterizing the parameters of known data-generating models from bivariate visualizations. Our findings indicate that, although participants generally exhibited lower accuracy compared to statistical models, they frequently outperformed Bayesian agents, particularly when faced with extreme samples. Participants appeared to rely on their internal models to filter out noisy visualizations, thus improving their resilience against spurious data. However, participants displayed overconfidence and struggled with uncertainty estimation. They also exhibited higher variance than statistical machines. Our findings suggest that analyst gut reactions to visualizations may provide an advantage, even when departing from rationality. These results carry implications for designing visual analytics tools, offering new perspectives on how to integrate statistical models and analyst intuition for improved inference and decision-making. The data and materials for this paper are available at https://osf.io/qmfv6\",\"PeriodicalId\":94035,\"journal\":{\"name\":\"IEEE transactions on visualization and computer graphics\",\"volume\":\"31 1\",\"pages\":\"754-764\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on visualization and computer graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10677479/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10677479/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人们通常不仅利用可视化来检查给定的数据集,而且还利用可视化来得出关于基本模型或现象的可推广结论。先前的研究将人类的可视化推理与最优贝叶斯代理进行了比较,认为偏离理性分析是有问题的。然而,在某些情况下,人类依赖非规范性启发式推理可能被证明是有利的。我们研究了人类直觉可能超越理想化统计理性的情况。在两个实验中,我们考察了个人从二元可视化中描述已知数据生成模型参数的准确性。我们的研究结果表明,虽然与统计模型相比,参与者通常表现出较低的准确性,但他们的表现经常优于贝叶斯代理,尤其是在面对极端样本时。参与者似乎依靠他们的内部模型来过滤嘈杂的可视化信息,从而提高了他们对虚假数据的应变能力。不过,参与者表现得过于自信,在不确定性估计方面举步维艰。他们还表现出比统计机器更高的方差。我们的研究结果表明,分析师对可视化的直觉反应可能会带来优势,即使是在偏离理性的情况下。这些结果对设计可视化分析工具具有重要意义,为如何整合统计模型和分析师直觉以改进推理和决策提供了新的视角。本文的数据和材料可从以下网站获取: https://osf.io/qmfv6
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trust Your Gut: Comparing Human and Machine Inference from Noisy Visualizations
People commonly utilize visualizations not only to examine a given dataset, but also to draw generalizable conclusions about the underlying models or phenomena. Prior research has compared human visual inference to that of an optimal Bayesian agent, with deviations from rational analysis viewed as problematic. However, human reliance on non-normative heuristics may prove advantageous in certain circumstances. We investigate scenarios where human intuition might surpass idealized statistical rationality. In two experiments, we examine individuals' accuracy in characterizing the parameters of known data-generating models from bivariate visualizations. Our findings indicate that, although participants generally exhibited lower accuracy compared to statistical models, they frequently outperformed Bayesian agents, particularly when faced with extreme samples. Participants appeared to rely on their internal models to filter out noisy visualizations, thus improving their resilience against spurious data. However, participants displayed overconfidence and struggled with uncertainty estimation. They also exhibited higher variance than statistical machines. Our findings suggest that analyst gut reactions to visualizations may provide an advantage, even when departing from rationality. These results carry implications for designing visual analytics tools, offering new perspectives on how to integrate statistical models and analyst intuition for improved inference and decision-making. The data and materials for this paper are available at https://osf.io/qmfv6
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Reviewers List Errata to “DiffFit: Visually-Guided Differentiable Fitting of Molecule Structures to a Cryo-EM Map” The Census-Stub Graph Invariant Descriptor TimeLighting: Guided Exploration of 2D Temporal Network Projections Preface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1