VADIS:用于动态文档表示和信息搜索的可视化分析管道

Rui Qiu;Yamei Tu;Po-Yin Yen;Han-Wei Shen
{"title":"VADIS:用于动态文档表示和信息搜索的可视化分析管道","authors":"Rui Qiu;Yamei Tu;Po-Yin Yen;Han-Wei Shen","doi":"10.1109/TVCG.2024.3456339","DOIUrl":null,"url":null,"abstract":"In the biomedical domain, visualizing the document embeddings of an extensive corpus has been widely used in information-seeking tasks. However, three key challenges with existing visualizations make it difficult for clinicians to find information efficiently. First, the document embeddings used in these visualizations are generated statically by pretrained language models, which cannot adapt to the user's evolving interest. Second, existing document visualization techniques cannot effectively display how the documents are relevant to users' interest, making it difficult for users to identify the most pertinent information. Third, existing embedding generation and visualization processes suffer from a lack of interpretability, making it difficult to understand, trust and use the result for decision-making. In this paper, we present a novel visual analytics pipeline for user-driven document representation and iterative information seeking (VADIS). VADIS introduces a prompt-based attention model (PAM) that generates dynamic document embedding and document relevance adjusted to the user's query. To effectively visualize these two pieces of information, we design a new document map that leverages a circular grid layout to display documents based on both their relevance to the query and the semantic similarity. Additionally, to improve the interpretability, we introduce a corpus-level attention visualization method to improve the user's understanding of the model focus and to enable the users to identify potential oversight. This visualization, in turn, empowers users to refine, update and introduce new queries, thereby facilitating a dynamic and iterative information-seeking experience. We evaluated VADIS quantitatively and qualitatively on a real-world dataset of biomedical research papers to demonstrate its effectiveness.","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"31 1","pages":"1312-1321"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VADIS: A Visual Analytics Pipeline for Dynamic Document Representation and Information-Seeking\",\"authors\":\"Rui Qiu;Yamei Tu;Po-Yin Yen;Han-Wei Shen\",\"doi\":\"10.1109/TVCG.2024.3456339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the biomedical domain, visualizing the document embeddings of an extensive corpus has been widely used in information-seeking tasks. However, three key challenges with existing visualizations make it difficult for clinicians to find information efficiently. First, the document embeddings used in these visualizations are generated statically by pretrained language models, which cannot adapt to the user's evolving interest. Second, existing document visualization techniques cannot effectively display how the documents are relevant to users' interest, making it difficult for users to identify the most pertinent information. Third, existing embedding generation and visualization processes suffer from a lack of interpretability, making it difficult to understand, trust and use the result for decision-making. In this paper, we present a novel visual analytics pipeline for user-driven document representation and iterative information seeking (VADIS). VADIS introduces a prompt-based attention model (PAM) that generates dynamic document embedding and document relevance adjusted to the user's query. To effectively visualize these two pieces of information, we design a new document map that leverages a circular grid layout to display documents based on both their relevance to the query and the semantic similarity. Additionally, to improve the interpretability, we introduce a corpus-level attention visualization method to improve the user's understanding of the model focus and to enable the users to identify potential oversight. This visualization, in turn, empowers users to refine, update and introduce new queries, thereby facilitating a dynamic and iterative information-seeking experience. We evaluated VADIS quantitatively and qualitatively on a real-world dataset of biomedical research papers to demonstrate its effectiveness.\",\"PeriodicalId\":94035,\"journal\":{\"name\":\"IEEE transactions on visualization and computer graphics\",\"volume\":\"31 1\",\"pages\":\"1312-1321\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on visualization and computer graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10677360/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10677360/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在生物医学领域,将大量语料库的文档嵌入可视化已被广泛应用于信息搜索任务中。然而,现有的可视化技术存在三大挑战,使临床医生难以高效地查找信息。首先,这些可视化中使用的文档嵌入是由预训练的语言模型静态生成的,无法适应用户不断变化的兴趣。其次,现有的文档可视化技术无法有效显示文档与用户兴趣的相关性,使用户难以识别最相关的信息。第三,现有的嵌入生成和可视化过程缺乏可解释性,导致用户难以理解、信任和使用结果进行决策。在本文中,我们提出了一种新颖的视觉分析管道,用于用户驱动的文档表示和迭代信息搜索(VADIS)。VADIS 引入了一种基于提示的注意力模型(PAM),可根据用户的查询生成动态的文档嵌入和文档相关性调整。为了有效地将这两种信息可视化,我们设计了一种新的文档地图,利用环形网格布局,根据文档与查询的相关性和语义相似性来显示文档。此外,为了提高可解释性,我们引入了一种语料库级关注度可视化方法,以提高用户对模型重点的理解,并使用户能够识别潜在的疏漏。这种可视化反过来又使用户能够完善、更新和引入新的查询,从而促进了动态和迭代的信息搜索体验。我们在现实世界的生物医学研究论文数据集上对 VADIS 进行了定量和定性评估,以证明其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VADIS: A Visual Analytics Pipeline for Dynamic Document Representation and Information-Seeking
In the biomedical domain, visualizing the document embeddings of an extensive corpus has been widely used in information-seeking tasks. However, three key challenges with existing visualizations make it difficult for clinicians to find information efficiently. First, the document embeddings used in these visualizations are generated statically by pretrained language models, which cannot adapt to the user's evolving interest. Second, existing document visualization techniques cannot effectively display how the documents are relevant to users' interest, making it difficult for users to identify the most pertinent information. Third, existing embedding generation and visualization processes suffer from a lack of interpretability, making it difficult to understand, trust and use the result for decision-making. In this paper, we present a novel visual analytics pipeline for user-driven document representation and iterative information seeking (VADIS). VADIS introduces a prompt-based attention model (PAM) that generates dynamic document embedding and document relevance adjusted to the user's query. To effectively visualize these two pieces of information, we design a new document map that leverages a circular grid layout to display documents based on both their relevance to the query and the semantic similarity. Additionally, to improve the interpretability, we introduce a corpus-level attention visualization method to improve the user's understanding of the model focus and to enable the users to identify potential oversight. This visualization, in turn, empowers users to refine, update and introduce new queries, thereby facilitating a dynamic and iterative information-seeking experience. We evaluated VADIS quantitatively and qualitatively on a real-world dataset of biomedical research papers to demonstrate its effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Reviewers List Errata to “DiffFit: Visually-Guided Differentiable Fitting of Molecule Structures to a Cryo-EM Map” The Census-Stub Graph Invariant Descriptor TimeLighting: Guided Exploration of 2D Temporal Network Projections Preface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1