中等冲击速度下撞击液滴凝固的实验和理论研究

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Journal of Engineering Mathematics Pub Date : 2024-09-04 DOI:10.1007/s10665-024-10393-9
Ryan McGuan, Elaheh Alizadeh-Birjandi, Peiwen Yan, Stephen H. Davis, H. Pirouz Kavehpour
{"title":"中等冲击速度下撞击液滴凝固的实验和理论研究","authors":"Ryan McGuan, Elaheh Alizadeh-Birjandi, Peiwen Yan, Stephen H. Davis, H. Pirouz Kavehpour","doi":"10.1007/s10665-024-10393-9","DOIUrl":null,"url":null,"abstract":"<p>Spreading of liquid drops on cold solid substrates is a complicated problem that involves heat transfer, fluid dynamics, and phase change physics combined with complex wetting behaviors at the contact line. Understanding the physics behind the non-isothermal spreading of droplet is of utmost importance due to its broad applications in diverse areas of industry such as in additive manufacturing processes. This work mainly focuses on determining the important physical parameters involved in the non-isothermal spreading of droplets with low contact angle (<span>\\(\\theta &lt;\\pi /2\\)</span>) as well as controlling the post-solidification geometry of impinging droplets with moderate impact velocity where spreading is driven by impact velocities, but fingerings or instabilities do not occur at the contact line. Using analytical modeling, a possible explanation for contact-line arrest is produced that demonstrates that the final radius of droplets of moderate impacting velocity is independent of the initial conditions including the impact dynamics and temperature gradients. The predictive capacity of this model is confirmed with experimental results.</p>","PeriodicalId":50204,"journal":{"name":"Journal of Engineering Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and theoretical investigation of impinging droplet solidification at moderate impact velocities\",\"authors\":\"Ryan McGuan, Elaheh Alizadeh-Birjandi, Peiwen Yan, Stephen H. Davis, H. Pirouz Kavehpour\",\"doi\":\"10.1007/s10665-024-10393-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Spreading of liquid drops on cold solid substrates is a complicated problem that involves heat transfer, fluid dynamics, and phase change physics combined with complex wetting behaviors at the contact line. Understanding the physics behind the non-isothermal spreading of droplet is of utmost importance due to its broad applications in diverse areas of industry such as in additive manufacturing processes. This work mainly focuses on determining the important physical parameters involved in the non-isothermal spreading of droplets with low contact angle (<span>\\\\(\\\\theta &lt;\\\\pi /2\\\\)</span>) as well as controlling the post-solidification geometry of impinging droplets with moderate impact velocity where spreading is driven by impact velocities, but fingerings or instabilities do not occur at the contact line. Using analytical modeling, a possible explanation for contact-line arrest is produced that demonstrates that the final radius of droplets of moderate impacting velocity is independent of the initial conditions including the impact dynamics and temperature gradients. The predictive capacity of this model is confirmed with experimental results.</p>\",\"PeriodicalId\":50204,\"journal\":{\"name\":\"Journal of Engineering Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Mathematics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10665-024-10393-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Mathematics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-024-10393-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

液滴在冷固体基底上的扩散是一个复杂的问题,涉及传热、流体动力学、相变物理学以及接触线处复杂的润湿行为。了解液滴非等温扩散背后的物理学原理至关重要,因为它可广泛应用于各种工业领域,如增材制造工艺。这项工作的主要重点是确定低接触角(\(\theta <\pi /2\))液滴非等温铺展所涉及的重要物理参数,以及控制中等冲击速度的撞击液滴的后凝固几何形状,在这种情况下,铺展是由冲击速度驱动的,但在接触线处不会出现指状或不稳定性。通过分析建模,可以解释接触线停滞的原因,证明中等撞击速度液滴的最终半径与初始条件(包括撞击动力学和温度梯度)无关。实验结果证实了该模型的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental and theoretical investigation of impinging droplet solidification at moderate impact velocities

Spreading of liquid drops on cold solid substrates is a complicated problem that involves heat transfer, fluid dynamics, and phase change physics combined with complex wetting behaviors at the contact line. Understanding the physics behind the non-isothermal spreading of droplet is of utmost importance due to its broad applications in diverse areas of industry such as in additive manufacturing processes. This work mainly focuses on determining the important physical parameters involved in the non-isothermal spreading of droplets with low contact angle (\(\theta <\pi /2\)) as well as controlling the post-solidification geometry of impinging droplets with moderate impact velocity where spreading is driven by impact velocities, but fingerings or instabilities do not occur at the contact line. Using analytical modeling, a possible explanation for contact-line arrest is produced that demonstrates that the final radius of droplets of moderate impacting velocity is independent of the initial conditions including the impact dynamics and temperature gradients. The predictive capacity of this model is confirmed with experimental results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Engineering Mathematics
Journal of Engineering Mathematics 工程技术-工程:综合
CiteScore
2.10
自引率
7.70%
发文量
44
审稿时长
6 months
期刊介绍: The aim of this journal is to promote the application of mathematics to problems from engineering and the applied sciences. It also aims to emphasize the intrinsic unity, through mathematics, of the fundamental problems of applied and engineering science. The scope of the journal includes the following: • Mathematics: Ordinary and partial differential equations, Integral equations, Asymptotics, Variational and functional−analytic methods, Numerical analysis, Computational methods. • Applied Fields: Continuum mechanics, Stability theory, Wave propagation, Diffusion, Heat and mass transfer, Free−boundary problems; Fluid mechanics: Aero− and hydrodynamics, Boundary layers, Shock waves, Fluid machinery, Fluid−structure interactions, Convection, Combustion, Acoustics, Multi−phase flows, Transition and turbulence, Creeping flow, Rheology, Porous−media flows, Ocean engineering, Atmospheric engineering, Non-Newtonian flows, Ship hydrodynamics; Solid mechanics: Elasticity, Classical mechanics, Nonlinear mechanics, Vibrations, Plates and shells, Fracture mechanics; Biomedical engineering, Geophysical engineering, Reaction−diffusion problems; and related areas. The Journal also publishes occasional invited ''Perspectives'' articles by distinguished researchers reviewing and bringing their authoritative overview to recent developments in topics of current interest in their area of expertise. Authors wishing to suggest topics for such articles should contact the Editors-in-Chief directly. Prospective authors are encouraged to consult recent issues of the journal in order to judge whether or not their manuscript is consistent with the style and content of published papers.
期刊最新文献
Erosion of surfaces by trapped vortices Nanoparticle uptake by a semi-permeable, spherical cell from an external planar diffusive field. II. Numerical study of temporal and spatial development validated using FEM On the positive self-similar solutions of the boundary-layer wedge flow problem of a power-law fluid Experimental and theoretical investigation of impinging droplet solidification at moderate impact velocities Reflection and transmission of SH waves at the interface of a V-notch and a piezoelectric/piezomagnetic half-space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1