{"title":"V 形缺口和压电/压磁半空间界面上的 SH 波反射和传输","authors":"Xi-meng Zhang, Hui Qi","doi":"10.1007/s10665-024-10392-w","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the dynamic behavior of a V-notch with non-trivial boundaries in a piezoelectric/piezomagnetic half-space. We start by considering a SH wave impinging on the piezoelectric/piezomagnetic half-space. Upon employing the superposition principle, an expression for the scattering wave is derived, which meets the required conditions at the boundary of the half-space. Subsequently, we provide the analytic expression for the standing wave, formulated to meet the stress-free assumptions and electric/magnetic insulation at the boundaries of the V-notch. This is done using an expansion in fractional Bessel functions and the Graf theorem. Finally, a method based on Green’ functions is employed to divide the half-space along the vertical interface, where in-plane electric and magnetic fields and out-of-plane forces are exerted. This leads to the formulation of integral Fredholm equations, which are solved using an expansion into orthogonal functions and an effective truncation technique. Our results describe the scattering effect on the concentration factors of the dynamic stress, and of electric and magnetic fields in relevant conditions. The analytic solutions are validated using finite element method, and results confirm the accuracy of our findings.</p>","PeriodicalId":50204,"journal":{"name":"Journal of Engineering Mathematics","volume":"10 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reflection and transmission of SH waves at the interface of a V-notch and a piezoelectric/piezomagnetic half-space\",\"authors\":\"Xi-meng Zhang, Hui Qi\",\"doi\":\"10.1007/s10665-024-10392-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper investigates the dynamic behavior of a V-notch with non-trivial boundaries in a piezoelectric/piezomagnetic half-space. We start by considering a SH wave impinging on the piezoelectric/piezomagnetic half-space. Upon employing the superposition principle, an expression for the scattering wave is derived, which meets the required conditions at the boundary of the half-space. Subsequently, we provide the analytic expression for the standing wave, formulated to meet the stress-free assumptions and electric/magnetic insulation at the boundaries of the V-notch. This is done using an expansion in fractional Bessel functions and the Graf theorem. Finally, a method based on Green’ functions is employed to divide the half-space along the vertical interface, where in-plane electric and magnetic fields and out-of-plane forces are exerted. This leads to the formulation of integral Fredholm equations, which are solved using an expansion into orthogonal functions and an effective truncation technique. Our results describe the scattering effect on the concentration factors of the dynamic stress, and of electric and magnetic fields in relevant conditions. The analytic solutions are validated using finite element method, and results confirm the accuracy of our findings.</p>\",\"PeriodicalId\":50204,\"journal\":{\"name\":\"Journal of Engineering Mathematics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Mathematics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10665-024-10392-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Mathematics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-024-10392-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了压电/压磁半空间中具有非三维边界的 V 型缺口的动态行为。我们首先考虑冲击压电/压磁半空间的 SH 波。利用叠加原理,我们得出了散射波的表达式,该表达式满足半空间边界的必要条件。随后,我们提供了驻波的解析表达式,以满足无应力假设和 V 型缺口边界的电/磁绝缘。这需要使用分数贝塞尔函数展开和格拉夫定理。最后,采用基于格林函数的方法沿垂直界面划分半空间,在此施加平面内电场和磁场以及平面外力。这导致了积分弗雷德霍姆方程的形成,并使用正交函数展开和有效截断技术对其进行求解。我们的结果描述了在相关条件下动态应力、电场和磁场对集中因子的散射效应。使用有限元方法对解析解进行了验证,结果证实了我们研究结果的准确性。
Reflection and transmission of SH waves at the interface of a V-notch and a piezoelectric/piezomagnetic half-space
This paper investigates the dynamic behavior of a V-notch with non-trivial boundaries in a piezoelectric/piezomagnetic half-space. We start by considering a SH wave impinging on the piezoelectric/piezomagnetic half-space. Upon employing the superposition principle, an expression for the scattering wave is derived, which meets the required conditions at the boundary of the half-space. Subsequently, we provide the analytic expression for the standing wave, formulated to meet the stress-free assumptions and electric/magnetic insulation at the boundaries of the V-notch. This is done using an expansion in fractional Bessel functions and the Graf theorem. Finally, a method based on Green’ functions is employed to divide the half-space along the vertical interface, where in-plane electric and magnetic fields and out-of-plane forces are exerted. This leads to the formulation of integral Fredholm equations, which are solved using an expansion into orthogonal functions and an effective truncation technique. Our results describe the scattering effect on the concentration factors of the dynamic stress, and of electric and magnetic fields in relevant conditions. The analytic solutions are validated using finite element method, and results confirm the accuracy of our findings.
期刊介绍:
The aim of this journal is to promote the application of mathematics to problems from engineering and the applied sciences. It also aims to emphasize the intrinsic unity, through mathematics, of the fundamental problems of applied and engineering science. The scope of the journal includes the following:
• Mathematics: Ordinary and partial differential equations, Integral equations, Asymptotics, Variational and functional−analytic methods, Numerical analysis, Computational methods.
• Applied Fields: Continuum mechanics, Stability theory, Wave propagation, Diffusion, Heat and mass transfer, Free−boundary problems; Fluid mechanics: Aero− and hydrodynamics, Boundary layers, Shock waves, Fluid machinery, Fluid−structure interactions, Convection, Combustion, Acoustics, Multi−phase flows, Transition and turbulence, Creeping flow, Rheology, Porous−media flows, Ocean engineering, Atmospheric engineering, Non-Newtonian flows, Ship hydrodynamics; Solid mechanics: Elasticity, Classical mechanics, Nonlinear mechanics, Vibrations, Plates and shells, Fracture mechanics; Biomedical engineering, Geophysical engineering, Reaction−diffusion problems; and related areas.
The Journal also publishes occasional invited ''Perspectives'' articles by distinguished researchers reviewing and bringing their authoritative overview to recent developments in topics of current interest in their area of expertise. Authors wishing to suggest topics for such articles should contact the Editors-in-Chief directly.
Prospective authors are encouraged to consult recent issues of the journal in order to judge whether or not their manuscript is consistent with the style and content of published papers.