磁场和流体滑动对通过图案化泽塔电位微通道的电渗透布林克曼流的影响

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Journal of Engineering Mathematics Pub Date : 2024-08-19 DOI:10.1007/s10665-024-10391-x
Vishal Chhabra, Chandra Shekhar Nishad, Manoj Sahni, Vineet Kumar Chaurasiya
{"title":"磁场和流体滑动对通过图案化泽塔电位微通道的电渗透布林克曼流的影响","authors":"Vishal Chhabra, Chandra Shekhar Nishad, Manoj Sahni, Vineet Kumar Chaurasiya","doi":"10.1007/s10665-024-10391-x","DOIUrl":null,"url":null,"abstract":"<p>An analytical investigation is conducted to analyze the impact of magnetic field and hydrodynamic slippage on two-dimensional electro-osmotic Brinkman flow in a microchannel with cosine surface zeta potential. The Brinkman equation is utilized to govern the fluid flow within a fully saturated, homogeneous, and isotropic porous medium. We consider a very small magnetic Reynolds number to eliminate the induced magnetic field equation. The Navier slip boundary condition is applied to assess the impact of hydrodynamic slippage. We utilize the Debye–Huckel length approximation to linearize the Poisson–Boltzmann equation, which governs the potential of the electrical double layer. The stream function is obtained analytically, and contour plots, velocity fields, shear stresses, and pressure gradients are assessed to gain a proper understanding of flow physics. We utilize the stream function to plot the streamline plots for distinct assumed flow parameters. We observed that for a fixed Darcy number, the intensity of flow vortices decreases with increasing Hartman number while increasing with increasing slip length. Further, altering the wave number in the assumed cosine-waved zeta potential causes asymmetrical recirculations in the flow, which helps in increasing the scalar mixing process in microdevices. Further, the proposed investigation has various crucial applications, such as microfluidic cooling systems, drug delivery systems, and so on.</p>","PeriodicalId":50204,"journal":{"name":"Journal of Engineering Mathematics","volume":"32 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of magnetic field and hydrodynamic slippage on electro-osmotic Brinkman flow through patterned zeta potential microchannel\",\"authors\":\"Vishal Chhabra, Chandra Shekhar Nishad, Manoj Sahni, Vineet Kumar Chaurasiya\",\"doi\":\"10.1007/s10665-024-10391-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An analytical investigation is conducted to analyze the impact of magnetic field and hydrodynamic slippage on two-dimensional electro-osmotic Brinkman flow in a microchannel with cosine surface zeta potential. The Brinkman equation is utilized to govern the fluid flow within a fully saturated, homogeneous, and isotropic porous medium. We consider a very small magnetic Reynolds number to eliminate the induced magnetic field equation. The Navier slip boundary condition is applied to assess the impact of hydrodynamic slippage. We utilize the Debye–Huckel length approximation to linearize the Poisson–Boltzmann equation, which governs the potential of the electrical double layer. The stream function is obtained analytically, and contour plots, velocity fields, shear stresses, and pressure gradients are assessed to gain a proper understanding of flow physics. We utilize the stream function to plot the streamline plots for distinct assumed flow parameters. We observed that for a fixed Darcy number, the intensity of flow vortices decreases with increasing Hartman number while increasing with increasing slip length. Further, altering the wave number in the assumed cosine-waved zeta potential causes asymmetrical recirculations in the flow, which helps in increasing the scalar mixing process in microdevices. Further, the proposed investigation has various crucial applications, such as microfluidic cooling systems, drug delivery systems, and so on.</p>\",\"PeriodicalId\":50204,\"journal\":{\"name\":\"Journal of Engineering Mathematics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Mathematics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10665-024-10391-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Mathematics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-024-10391-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文通过分析研究了磁场和流体滑动对具有余弦表面zeta电位的微通道中二维电渗布林克曼流动的影响。布林克曼方程用于控制完全饱和、均质和各向同性多孔介质中的流体流动。我们考虑了非常小的磁雷诺数,以消除诱导磁场方程。采用纳维滑移边界条件来评估流体滑移的影响。我们利用 Debye-Huckel 长度近似来线性化泊松-玻尔兹曼方程,该方程控制着电双层的电势。通过分析获得流函数,并评估等值线图、速度场、剪应力和压力梯度,从而正确理解流动物理。我们利用流函数绘制了不同假定流动参数的流线图。我们观察到,在达西数固定的情况下,流动旋涡的强度随着哈特曼数的增加而减小,同时随着滑移长度的增加而增大。此外,改变假定余弦波zeta势中的波数会导致流动中的非对称再循环,这有助于增加微器件中的标量混合过程。此外,所提出的研究还有各种重要应用,如微流体冷却系统、药物输送系统等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of magnetic field and hydrodynamic slippage on electro-osmotic Brinkman flow through patterned zeta potential microchannel

An analytical investigation is conducted to analyze the impact of magnetic field and hydrodynamic slippage on two-dimensional electro-osmotic Brinkman flow in a microchannel with cosine surface zeta potential. The Brinkman equation is utilized to govern the fluid flow within a fully saturated, homogeneous, and isotropic porous medium. We consider a very small magnetic Reynolds number to eliminate the induced magnetic field equation. The Navier slip boundary condition is applied to assess the impact of hydrodynamic slippage. We utilize the Debye–Huckel length approximation to linearize the Poisson–Boltzmann equation, which governs the potential of the electrical double layer. The stream function is obtained analytically, and contour plots, velocity fields, shear stresses, and pressure gradients are assessed to gain a proper understanding of flow physics. We utilize the stream function to plot the streamline plots for distinct assumed flow parameters. We observed that for a fixed Darcy number, the intensity of flow vortices decreases with increasing Hartman number while increasing with increasing slip length. Further, altering the wave number in the assumed cosine-waved zeta potential causes asymmetrical recirculations in the flow, which helps in increasing the scalar mixing process in microdevices. Further, the proposed investigation has various crucial applications, such as microfluidic cooling systems, drug delivery systems, and so on.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Engineering Mathematics
Journal of Engineering Mathematics 工程技术-工程:综合
CiteScore
2.10
自引率
7.70%
发文量
44
审稿时长
6 months
期刊介绍: The aim of this journal is to promote the application of mathematics to problems from engineering and the applied sciences. It also aims to emphasize the intrinsic unity, through mathematics, of the fundamental problems of applied and engineering science. The scope of the journal includes the following: • Mathematics: Ordinary and partial differential equations, Integral equations, Asymptotics, Variational and functional−analytic methods, Numerical analysis, Computational methods. • Applied Fields: Continuum mechanics, Stability theory, Wave propagation, Diffusion, Heat and mass transfer, Free−boundary problems; Fluid mechanics: Aero− and hydrodynamics, Boundary layers, Shock waves, Fluid machinery, Fluid−structure interactions, Convection, Combustion, Acoustics, Multi−phase flows, Transition and turbulence, Creeping flow, Rheology, Porous−media flows, Ocean engineering, Atmospheric engineering, Non-Newtonian flows, Ship hydrodynamics; Solid mechanics: Elasticity, Classical mechanics, Nonlinear mechanics, Vibrations, Plates and shells, Fracture mechanics; Biomedical engineering, Geophysical engineering, Reaction−diffusion problems; and related areas. The Journal also publishes occasional invited ''Perspectives'' articles by distinguished researchers reviewing and bringing their authoritative overview to recent developments in topics of current interest in their area of expertise. Authors wishing to suggest topics for such articles should contact the Editors-in-Chief directly. Prospective authors are encouraged to consult recent issues of the journal in order to judge whether or not their manuscript is consistent with the style and content of published papers.
期刊最新文献
Erosion of surfaces by trapped vortices Nanoparticle uptake by a semi-permeable, spherical cell from an external planar diffusive field. II. Numerical study of temporal and spatial development validated using FEM On the positive self-similar solutions of the boundary-layer wedge flow problem of a power-law fluid Experimental and theoretical investigation of impinging droplet solidification at moderate impact velocities Reflection and transmission of SH waves at the interface of a V-notch and a piezoelectric/piezomagnetic half-space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1