Constantin Dalyac, Lucas Leclerc, Louis Vignoli, Mehdi Djellabi, Wesley da Silva Coelho, Bruno Ximenez, Alexandre Dareau, Davide Dreon, Vincent E. Elfving, Adrien Signoles, Louis-Paul Henry, Loïc Henriet
{"title":"使用中性原子量子处理器的图算法","authors":"Constantin Dalyac, Lucas Leclerc, Louis Vignoli, Mehdi Djellabi, Wesley da Silva Coelho, Bruno Ximenez, Alexandre Dareau, Davide Dreon, Vincent E. Elfving, Adrien Signoles, Louis-Paul Henry, Loïc Henriet","doi":"10.1140/epja/s10050-024-01385-5","DOIUrl":null,"url":null,"abstract":"<div><p>Neutral atom technology has steadily demonstrated significant theoretical and experimental advancements, positioning itself as a front-runner platform for running quantum algorithms. One unique advantage of this technology lies in the ability to reconfigure the geometry of the qubit register, from shot to shot. This unique feature makes possible the native embedding of graph-structured problems at the hardware level, with profound consequences for the resolution of complex optimization and machine learning tasks. By driving qubits, one can generate processed quantum states which retain graph complex properties. These states can then be leveraged to offer direct solutions to problems or as resources in hybrid quantum-classical schemes. In this paper, we review the advancements in quantum algorithms for graph problems running on neutral atom Quantum Processing Units (QPUs), and discuss recently introduced embedding and problem-solving techniques. In addition, we clarify ongoing advancements in hardware, with an emphasis on enhancing the scalability, controllability and computation repetition rate of neutral atom QPUs.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph algorithms with neutral atom quantum processors\",\"authors\":\"Constantin Dalyac, Lucas Leclerc, Louis Vignoli, Mehdi Djellabi, Wesley da Silva Coelho, Bruno Ximenez, Alexandre Dareau, Davide Dreon, Vincent E. Elfving, Adrien Signoles, Louis-Paul Henry, Loïc Henriet\",\"doi\":\"10.1140/epja/s10050-024-01385-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Neutral atom technology has steadily demonstrated significant theoretical and experimental advancements, positioning itself as a front-runner platform for running quantum algorithms. One unique advantage of this technology lies in the ability to reconfigure the geometry of the qubit register, from shot to shot. This unique feature makes possible the native embedding of graph-structured problems at the hardware level, with profound consequences for the resolution of complex optimization and machine learning tasks. By driving qubits, one can generate processed quantum states which retain graph complex properties. These states can then be leveraged to offer direct solutions to problems or as resources in hybrid quantum-classical schemes. In this paper, we review the advancements in quantum algorithms for graph problems running on neutral atom Quantum Processing Units (QPUs), and discuss recently introduced embedding and problem-solving techniques. In addition, we clarify ongoing advancements in hardware, with an emphasis on enhancing the scalability, controllability and computation repetition rate of neutral atom QPUs.</p></div>\",\"PeriodicalId\":786,\"journal\":{\"name\":\"The European Physical Journal A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal A\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epja/s10050-024-01385-5\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epja/s10050-024-01385-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Graph algorithms with neutral atom quantum processors
Neutral atom technology has steadily demonstrated significant theoretical and experimental advancements, positioning itself as a front-runner platform for running quantum algorithms. One unique advantage of this technology lies in the ability to reconfigure the geometry of the qubit register, from shot to shot. This unique feature makes possible the native embedding of graph-structured problems at the hardware level, with profound consequences for the resolution of complex optimization and machine learning tasks. By driving qubits, one can generate processed quantum states which retain graph complex properties. These states can then be leveraged to offer direct solutions to problems or as resources in hybrid quantum-classical schemes. In this paper, we review the advancements in quantum algorithms for graph problems running on neutral atom Quantum Processing Units (QPUs), and discuss recently introduced embedding and problem-solving techniques. In addition, we clarify ongoing advancements in hardware, with an emphasis on enhancing the scalability, controllability and computation repetition rate of neutral atom QPUs.
期刊介绍:
Hadron Physics
Hadron Structure
Hadron Spectroscopy
Hadronic and Electroweak Interactions of Hadrons
Nonperturbative Approaches to QCD
Phenomenological Approaches to Hadron Physics
Nuclear and Quark Matter
Heavy-Ion Collisions
Phase Diagram of the Strong Interaction
Hard Probes
Quark-Gluon Plasma and Hadronic Matter
Relativistic Transport and Hydrodynamics
Compact Stars
Nuclear Physics
Nuclear Structure and Reactions
Few-Body Systems
Radioactive Beams
Electroweak Interactions
Nuclear Astrophysics
Article Categories
Letters (Open Access)
Regular Articles
New Tools and Techniques
Reviews.