超大规模彩色旅行推销员问题的云计算方法

Zhicheng Lin, Jun Li, Yongcui Li
{"title":"超大规模彩色旅行推销员问题的云计算方法","authors":"Zhicheng Lin, Jun Li, Yongcui Li","doi":"10.1007/s11227-024-06433-x","DOIUrl":null,"url":null,"abstract":"<p>The colored traveling salesman problem (CTSP) generalizes the well-known multiple traveling salesman problem by utilizing colors to describe the accessibility of cities to individual salesmen. Many centralized algorithms have been developed to solve CTSP instances. This work presents a distributed solving framework and method for CTSP for the first time. The framework consists of multiple container-based computing nodes that rely on specific cloud infrastructures to perform distributed optimization in a pipeline style. In the framework, we develop a distributed Delaunay-triangulation-based variable neighborhood search (DDVNS) algorithm for solving a CTSP case decomposed into many traveling salesman problems. DDVNS exploits a two-stage initialization to generate an initial solution for all TSPs. After that, Delaunay-triangulation-based variable neighborhood search (DVNS) is employed to find local optima. Furthermore, the obtained solutions are improved by reallocating multicolor cities and iterating the search progress, ultimately leading to a group of CTSP solutions. Finally, extensive experiments show that DDVNS outperforms the state-of-the-art centralized VNS algorithms in terms of search efficiency and solution quality. Notably, we can achieve the best solution in a superscale case with 16 salesmen and 160,000 cities within 15 minutes, breaking the best record of CTSPs.</p>","PeriodicalId":501596,"journal":{"name":"The Journal of Supercomputing","volume":"88 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A cloud computing approach to superscale colored traveling salesman problems\",\"authors\":\"Zhicheng Lin, Jun Li, Yongcui Li\",\"doi\":\"10.1007/s11227-024-06433-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The colored traveling salesman problem (CTSP) generalizes the well-known multiple traveling salesman problem by utilizing colors to describe the accessibility of cities to individual salesmen. Many centralized algorithms have been developed to solve CTSP instances. This work presents a distributed solving framework and method for CTSP for the first time. The framework consists of multiple container-based computing nodes that rely on specific cloud infrastructures to perform distributed optimization in a pipeline style. In the framework, we develop a distributed Delaunay-triangulation-based variable neighborhood search (DDVNS) algorithm for solving a CTSP case decomposed into many traveling salesman problems. DDVNS exploits a two-stage initialization to generate an initial solution for all TSPs. After that, Delaunay-triangulation-based variable neighborhood search (DVNS) is employed to find local optima. Furthermore, the obtained solutions are improved by reallocating multicolor cities and iterating the search progress, ultimately leading to a group of CTSP solutions. Finally, extensive experiments show that DDVNS outperforms the state-of-the-art centralized VNS algorithms in terms of search efficiency and solution quality. Notably, we can achieve the best solution in a superscale case with 16 salesmen and 160,000 cities within 15 minutes, breaking the best record of CTSPs.</p>\",\"PeriodicalId\":501596,\"journal\":{\"name\":\"The Journal of Supercomputing\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Supercomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11227-024-06433-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11227-024-06433-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

彩色旅行推销员问题(CTSP)是对著名的多重旅行推销员问题的概括,它利用颜色来描述城市对每个推销员的可达性。目前已开发出许多集中式算法来解决 CTSP 实例。本研究首次提出了 CTSP 的分布式求解框架和方法。该框架由多个基于容器的计算节点组成,这些节点依靠特定的云基础设施,以流水线方式执行分布式优化。在该框架中,我们开发了一种基于 Delaunay 三角测量的分布式变量邻域搜索(DDVNS)算法,用于解决分解为多个旅行推销员问题的 CTSP 案例。DDVNS 利用两阶段初始化为所有 TSP 生成初始解。然后,采用基于 Delaunay 三角剖分的变量邻域搜索(DVNS)来寻找局部最优解。此外,还通过重新分配多色城市和迭代搜索进度来改进所获得的解,最终得到一组 CTSP 解。最后,大量实验表明,DDVNS 在搜索效率和解决方案质量方面都优于最先进的集中式 VNS 算法。值得注意的是,我们能在 15 分钟内获得 16 个销售员和 160,000 个城市的超大规模案例的最佳解决方案,打破了 CTSP 的最佳记录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A cloud computing approach to superscale colored traveling salesman problems

The colored traveling salesman problem (CTSP) generalizes the well-known multiple traveling salesman problem by utilizing colors to describe the accessibility of cities to individual salesmen. Many centralized algorithms have been developed to solve CTSP instances. This work presents a distributed solving framework and method for CTSP for the first time. The framework consists of multiple container-based computing nodes that rely on specific cloud infrastructures to perform distributed optimization in a pipeline style. In the framework, we develop a distributed Delaunay-triangulation-based variable neighborhood search (DDVNS) algorithm for solving a CTSP case decomposed into many traveling salesman problems. DDVNS exploits a two-stage initialization to generate an initial solution for all TSPs. After that, Delaunay-triangulation-based variable neighborhood search (DVNS) is employed to find local optima. Furthermore, the obtained solutions are improved by reallocating multicolor cities and iterating the search progress, ultimately leading to a group of CTSP solutions. Finally, extensive experiments show that DDVNS outperforms the state-of-the-art centralized VNS algorithms in terms of search efficiency and solution quality. Notably, we can achieve the best solution in a superscale case with 16 salesmen and 160,000 cities within 15 minutes, breaking the best record of CTSPs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A quadratic regression model to quantify certain latest corona treatment drug molecules based on coindices of M-polynomial Data integration from traditional to big data: main features and comparisons of ETL approaches End-to-end probability analysis method for multi-core distributed systems A cloud computing approach to superscale colored traveling salesman problems Approximating neural distinguishers using differential-linear imbalance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1