在 WSN 中使用自然启发算法和模糊逻辑进行传感器节点定位

Shilpi, Arvind Kumar
{"title":"在 WSN 中使用自然启发算法和模糊逻辑进行传感器节点定位","authors":"Shilpi, Arvind Kumar","doi":"10.1007/s11227-024-06464-4","DOIUrl":null,"url":null,"abstract":"<p>The node localization problem of wireless sensor networks (WSNs) is addressed in this article with a node localization algorithm designed using fuzzy logic and a nature-inspired algorithm. The coordinates of target nodes are obtained using fuzzy logic reasoning and nature-inspired algorithms. The fuzzy logic concept is used to remove the nonlinearities that arise due to signal strength measurement in the process of range estimation. The triangular and trapezoidal membership functions are used with the Mamdani fuzzy inference system for distance improvement between sensor nodes. Further, particle swarm optimization (PSO) and the Jaya algorithm (JA) determine the target nodes’ location coordinates. The comparison of the proposed fuzzy logic-based PSO (FL-PSO) and fuzzy logic-based JA (FL-JA) algorithms is made with PSO and Jaya algorithm-based node localization algorithms for localization error. The influence of anchor nodes and degree of irregularity is verified during localization analysis on the FL-PSO and FL-JA node localization algorithms. The proposed FL-PSO and FL-JA node localization algorithms are evaluated for scalability, computation time, mean absolute deviation, and complexity to determine their efficacy. The simulations are carried out on MATLAB software in addition to the fuzzy logic toolbox.</p>","PeriodicalId":501596,"journal":{"name":"The Journal of Supercomputing","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensor node localization using nature-inspired algorithms with fuzzy logic in WSNs\",\"authors\":\"Shilpi, Arvind Kumar\",\"doi\":\"10.1007/s11227-024-06464-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The node localization problem of wireless sensor networks (WSNs) is addressed in this article with a node localization algorithm designed using fuzzy logic and a nature-inspired algorithm. The coordinates of target nodes are obtained using fuzzy logic reasoning and nature-inspired algorithms. The fuzzy logic concept is used to remove the nonlinearities that arise due to signal strength measurement in the process of range estimation. The triangular and trapezoidal membership functions are used with the Mamdani fuzzy inference system for distance improvement between sensor nodes. Further, particle swarm optimization (PSO) and the Jaya algorithm (JA) determine the target nodes’ location coordinates. The comparison of the proposed fuzzy logic-based PSO (FL-PSO) and fuzzy logic-based JA (FL-JA) algorithms is made with PSO and Jaya algorithm-based node localization algorithms for localization error. The influence of anchor nodes and degree of irregularity is verified during localization analysis on the FL-PSO and FL-JA node localization algorithms. The proposed FL-PSO and FL-JA node localization algorithms are evaluated for scalability, computation time, mean absolute deviation, and complexity to determine their efficacy. The simulations are carried out on MATLAB software in addition to the fuzzy logic toolbox.</p>\",\"PeriodicalId\":501596,\"journal\":{\"name\":\"The Journal of Supercomputing\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Supercomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11227-024-06464-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11227-024-06464-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文针对无线传感器网络(WSN)的节点定位问题,采用模糊逻辑和自然启发算法设计了一种节点定位算法。目标节点的坐标是通过模糊逻辑推理和自然启发算法获得的。模糊逻辑概念用于消除测距估计过程中因信号强度测量而产生的非线性。三角形和梯形成员函数与 Mamdani 模糊推理系统一起用于改善传感器节点之间的距离。此外,粒子群优化(PSO)和 Jaya 算法(JA)可确定目标节点的位置坐标。比较了基于模糊逻辑的 PSO(FL-PSO)和基于模糊逻辑的 JA(FL-JA)算法与基于 PSO 和 Jaya 算法的节点定位算法的定位误差。在定位分析过程中,验证了锚节点和不规则程度对 FL-PSO 和 FL-JA 节点定位算法的影响。对所提出的 FL-PSO 和 FL-JA 节点定位算法的可扩展性、计算时间、平均绝对偏差和复杂性进行了评估,以确定其有效性。模拟是在 MATLAB 软件和模糊逻辑工具箱上进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensor node localization using nature-inspired algorithms with fuzzy logic in WSNs

The node localization problem of wireless sensor networks (WSNs) is addressed in this article with a node localization algorithm designed using fuzzy logic and a nature-inspired algorithm. The coordinates of target nodes are obtained using fuzzy logic reasoning and nature-inspired algorithms. The fuzzy logic concept is used to remove the nonlinearities that arise due to signal strength measurement in the process of range estimation. The triangular and trapezoidal membership functions are used with the Mamdani fuzzy inference system for distance improvement between sensor nodes. Further, particle swarm optimization (PSO) and the Jaya algorithm (JA) determine the target nodes’ location coordinates. The comparison of the proposed fuzzy logic-based PSO (FL-PSO) and fuzzy logic-based JA (FL-JA) algorithms is made with PSO and Jaya algorithm-based node localization algorithms for localization error. The influence of anchor nodes and degree of irregularity is verified during localization analysis on the FL-PSO and FL-JA node localization algorithms. The proposed FL-PSO and FL-JA node localization algorithms are evaluated for scalability, computation time, mean absolute deviation, and complexity to determine their efficacy. The simulations are carried out on MATLAB software in addition to the fuzzy logic toolbox.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A quadratic regression model to quantify certain latest corona treatment drug molecules based on coindices of M-polynomial Data integration from traditional to big data: main features and comparisons of ETL approaches End-to-end probability analysis method for multi-core distributed systems A cloud computing approach to superscale colored traveling salesman problems Approximating neural distinguishers using differential-linear imbalance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1