{"title":"利用通用多层网络模型分析首尔公共交通系统的鲁棒性","authors":"Seokjin Lee, Seongryong Kim, Jungeun Kim","doi":"10.1007/s11227-024-06404-2","DOIUrl":null,"url":null,"abstract":"<p>Public transportation systems play a vital role in modern cities, enhancing the quality of life and fostering sustainable economic growth. Modeling and understanding the complexities of these transportation networks are crucial for effective urban planning and management. Traditional models often fall short in capturing the intricate interactions and interdependencies in multimodal public transportation systems. To address this challenge, recent research has embraced multilayer network models, offering a more sophisticated representation of these networks. However, there is a need to explore and develop robustness analysis techniques tailored to these general multilayer networks to fully assess their complexities in real-world scenarios. In this paper, we employ a general multilayer network model to comprehensively analyze a real-world multimodal transportation network in Seoul, South Korea. We leverage a large volume of traffic data to model, visualize, and evaluate the city’s mobility patterns. Additionally, we introduce two novel methodologies for robustness analysis, one based on random walk coverage and the other on eigenvalue, specifically designed for general multilayer networks. Extensive experiments using the large volume of real-world data sets demonstrate the effectiveness of the proposed approaches.</p>","PeriodicalId":501596,"journal":{"name":"The Journal of Supercomputing","volume":"88 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robustness Analysis of Public Transportation Systems in Seoul Using General Multilayer Network Models\",\"authors\":\"Seokjin Lee, Seongryong Kim, Jungeun Kim\",\"doi\":\"10.1007/s11227-024-06404-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Public transportation systems play a vital role in modern cities, enhancing the quality of life and fostering sustainable economic growth. Modeling and understanding the complexities of these transportation networks are crucial for effective urban planning and management. Traditional models often fall short in capturing the intricate interactions and interdependencies in multimodal public transportation systems. To address this challenge, recent research has embraced multilayer network models, offering a more sophisticated representation of these networks. However, there is a need to explore and develop robustness analysis techniques tailored to these general multilayer networks to fully assess their complexities in real-world scenarios. In this paper, we employ a general multilayer network model to comprehensively analyze a real-world multimodal transportation network in Seoul, South Korea. We leverage a large volume of traffic data to model, visualize, and evaluate the city’s mobility patterns. Additionally, we introduce two novel methodologies for robustness analysis, one based on random walk coverage and the other on eigenvalue, specifically designed for general multilayer networks. Extensive experiments using the large volume of real-world data sets demonstrate the effectiveness of the proposed approaches.</p>\",\"PeriodicalId\":501596,\"journal\":{\"name\":\"The Journal of Supercomputing\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Supercomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11227-024-06404-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11227-024-06404-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robustness Analysis of Public Transportation Systems in Seoul Using General Multilayer Network Models
Public transportation systems play a vital role in modern cities, enhancing the quality of life and fostering sustainable economic growth. Modeling and understanding the complexities of these transportation networks are crucial for effective urban planning and management. Traditional models often fall short in capturing the intricate interactions and interdependencies in multimodal public transportation systems. To address this challenge, recent research has embraced multilayer network models, offering a more sophisticated representation of these networks. However, there is a need to explore and develop robustness analysis techniques tailored to these general multilayer networks to fully assess their complexities in real-world scenarios. In this paper, we employ a general multilayer network model to comprehensively analyze a real-world multimodal transportation network in Seoul, South Korea. We leverage a large volume of traffic data to model, visualize, and evaluate the city’s mobility patterns. Additionally, we introduce two novel methodologies for robustness analysis, one based on random walk coverage and the other on eigenvalue, specifically designed for general multilayer networks. Extensive experiments using the large volume of real-world data sets demonstrate the effectiveness of the proposed approaches.