钌介导的 1,4-二氮杂-1,3-丁二烯配体的多功能电子和结构特性:综述

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-08-15 DOI:10.1134/S1070328423601449
A. S. Roy
{"title":"钌介导的 1,4-二氮杂-1,3-丁二烯配体的多功能电子和结构特性:综述","authors":"A. S. Roy","doi":"10.1134/S1070328423601449","DOIUrl":null,"url":null,"abstract":"<p>Ruthenium α-diimine complexes are widely known for their unique low-lying excited states and potent light absorption capabilities in the visible and NIR regions. A few specially constructed Ru α-diimine complexes have also shown enormous potential in the biomedical field. Several Ru-diimine complexes are well known for their catalytic activity. In this context, the simplest α-diimine system is 1,4-diaza-1,3-butadiene, abbreviated as (DAB/DAD), which received the greatest attention from the research communities. DAB ligands are redox-active. DAB ligands typically function as effective electron donors by employing lone pairs of nitrogen atoms and the π-electrons of the C=N bonds while coordinating the metal ion. The structural, electronic, and photophysical properties of the metal-mediated (DAB) complexes largely depend on the substitution of the ligand backbone as well as metal precursors. A versatile ‘redox noninnocent’ 1,4-diaza-1,3-butadiene motif can stabilise different oxidation states of ruthenium metal depending on the reaction conditions and the presence of co-ligands. The comparative studies of the structural and electrical characteristics of diverse ruthenium-DAB compounds are intriguing, which opens up a new route for researchers to utilise them in a variety of application domains. It is challenging and fascinating to determine the precise electronic structure of redox noninnocent diimine complexes in the presence of a ‘redox active’ metal like ruthenium. In this concise review, we provided a brief overview of the structural and electrical features of various Ru DAB complexes that solely comprise (–N=CH–CH=N–) fragments in the skeleton.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Versatile Electronic and Structural Properties of Ruthenium-Mediated 1,4-Diaza-1,3-butadiene Ligands: A Review\",\"authors\":\"A. S. Roy\",\"doi\":\"10.1134/S1070328423601449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ruthenium α-diimine complexes are widely known for their unique low-lying excited states and potent light absorption capabilities in the visible and NIR regions. A few specially constructed Ru α-diimine complexes have also shown enormous potential in the biomedical field. Several Ru-diimine complexes are well known for their catalytic activity. In this context, the simplest α-diimine system is 1,4-diaza-1,3-butadiene, abbreviated as (DAB/DAD), which received the greatest attention from the research communities. DAB ligands are redox-active. DAB ligands typically function as effective electron donors by employing lone pairs of nitrogen atoms and the π-electrons of the C=N bonds while coordinating the metal ion. The structural, electronic, and photophysical properties of the metal-mediated (DAB) complexes largely depend on the substitution of the ligand backbone as well as metal precursors. A versatile ‘redox noninnocent’ 1,4-diaza-1,3-butadiene motif can stabilise different oxidation states of ruthenium metal depending on the reaction conditions and the presence of co-ligands. The comparative studies of the structural and electrical characteristics of diverse ruthenium-DAB compounds are intriguing, which opens up a new route for researchers to utilise them in a variety of application domains. It is challenging and fascinating to determine the precise electronic structure of redox noninnocent diimine complexes in the presence of a ‘redox active’ metal like ruthenium. In this concise review, we provided a brief overview of the structural and electrical features of various Ru DAB complexes that solely comprise (–N=CH–CH=N–) fragments in the skeleton.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1070328423601449\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1070328423601449","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 钌α-二亚胺配合物因其独特的低洼激发态和在可见光和近红外区域的强光吸收能力而广为人知。一些专门构建的 Ru α-二亚胺配合物在生物医学领域也显示出巨大的潜力。有几种 Ru 二亚胺配合物因其催化活性而闻名。在这方面,最简单的 α-二亚胺体系是 1,4-二氮杂-1,3-丁二烯,缩写为 (DAB/DAD),它受到了研究界的极大关注。DAB 配体具有氧化还原活性。DAB 配体在配位金属离子时,通常会利用氮原子的孤对电子和 C=N 键的π电子作为有效的电子供体。金属介导的(DAB)配合物的结构、电子和光物理特性在很大程度上取决于配体骨架和金属前体的替代情况。1,4- 二氮杂-1,3-丁二烯基团是一种多功能的 "氧化还原非无害 "基团,可根据反应条件和共配体的存在稳定钌金属的不同氧化态。对各种钌-DAB 化合物的结构和电学特性进行比较研究非常有趣,这为研究人员在各种应用领域利用这些化合物开辟了新的途径。在钌等 "氧化还原活性 "金属存在的情况下,确定氧化还原非无辜二亚胺配合物的精确电子结构既具有挑战性,又令人着迷。在这篇简明综述中,我们简要概述了骨架中仅包含 (-N=CH-CH=N-) 片段的各种 Ru DAB 复合物的结构和电学特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Versatile Electronic and Structural Properties of Ruthenium-Mediated 1,4-Diaza-1,3-butadiene Ligands: A Review

Ruthenium α-diimine complexes are widely known for their unique low-lying excited states and potent light absorption capabilities in the visible and NIR regions. A few specially constructed Ru α-diimine complexes have also shown enormous potential in the biomedical field. Several Ru-diimine complexes are well known for their catalytic activity. In this context, the simplest α-diimine system is 1,4-diaza-1,3-butadiene, abbreviated as (DAB/DAD), which received the greatest attention from the research communities. DAB ligands are redox-active. DAB ligands typically function as effective electron donors by employing lone pairs of nitrogen atoms and the π-electrons of the C=N bonds while coordinating the metal ion. The structural, electronic, and photophysical properties of the metal-mediated (DAB) complexes largely depend on the substitution of the ligand backbone as well as metal precursors. A versatile ‘redox noninnocent’ 1,4-diaza-1,3-butadiene motif can stabilise different oxidation states of ruthenium metal depending on the reaction conditions and the presence of co-ligands. The comparative studies of the structural and electrical characteristics of diverse ruthenium-DAB compounds are intriguing, which opens up a new route for researchers to utilise them in a variety of application domains. It is challenging and fascinating to determine the precise electronic structure of redox noninnocent diimine complexes in the presence of a ‘redox active’ metal like ruthenium. In this concise review, we provided a brief overview of the structural and electrical features of various Ru DAB complexes that solely comprise (–N=CH–CH=N–) fragments in the skeleton.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Differential Costs of Raising Grandchildren on Older Mother-Adult Child Relations in Black and White Families. Does Resilience Mediate the Relationship Between Negative Self-Image and Psychological Distress in Middle-Aged and Older Gay and Bisexual Men? Intergenerational Relations and Well-being Among Older Middle Eastern/Arab American Immigrants During the COVID-19 Pandemic. Caregiving Appraisals and Emotional Valence: Moderating Effects of Activity Participation. Heterogeneity of provider preferences for HIV Care Coordination Program features: latent class analysis of a discrete choice experiment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1