使用多编码器半隐式图变自动编码器分析单细胞 RNA 测序数据

IF 3.6 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS IEEE/ACM Transactions on Computational Biology and Bioinformatics Pub Date : 2024-09-10 DOI:10.1109/TCBB.2024.3458170
Shengwen Tian;Cunmei Ji;Jiancheng Ni;Yutian Wang;Chunhou Zheng
{"title":"使用多编码器半隐式图变自动编码器分析单细胞 RNA 测序数据","authors":"Shengwen Tian;Cunmei Ji;Jiancheng Ni;Yutian Wang;Chunhou Zheng","doi":"10.1109/TCBB.2024.3458170","DOIUrl":null,"url":null,"abstract":"Rapid advances in single-cell RNA sequencing (scRNA-seq) have made it possible to characterize cell states at a high resolution view for large scale library. scRNA-seq data contains a great deal of biological information, which can be mainly used to discover cell subtypes and track cell development. However, traditional methods face many challenges in addressing scRNA-seq data with high dimensions and high sparsity. For better analysis of scRNA-seq data, we propose a new framework called MSVGAE based on variational graph auto-encoder and graph attention networks. Specifically, we introduce multiple encoders to learn features at different scales and control for uninformative features. Moreover, different noises are added to encoders to promote the propagation of graph structural information and distribution uncertainty. Therefore, some complex posterior distributions can be captured by our model. MSVGAE maps scRNA-seq data with high dimensions and high noise into the low-dimensional latent space, which is beneficial for downstream tasks. In particular, MSVGAE can handle extremely sparse data. Before the experiment, we create 24 simulated datasets to simulate various biological scenarios and collect 8 real-world datasets. The experimental results of clustering, visualization and marker genes analysis indicate that MSVGAE model has excellent accuracy and robustness in analyzing scRNA-seq data.","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"21 6","pages":"2280-2291"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Multi-Encoder Semi-Implicit Graph Variational Autoencoder to Analyze Single-Cell RNA Sequencing Data\",\"authors\":\"Shengwen Tian;Cunmei Ji;Jiancheng Ni;Yutian Wang;Chunhou Zheng\",\"doi\":\"10.1109/TCBB.2024.3458170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid advances in single-cell RNA sequencing (scRNA-seq) have made it possible to characterize cell states at a high resolution view for large scale library. scRNA-seq data contains a great deal of biological information, which can be mainly used to discover cell subtypes and track cell development. However, traditional methods face many challenges in addressing scRNA-seq data with high dimensions and high sparsity. For better analysis of scRNA-seq data, we propose a new framework called MSVGAE based on variational graph auto-encoder and graph attention networks. Specifically, we introduce multiple encoders to learn features at different scales and control for uninformative features. Moreover, different noises are added to encoders to promote the propagation of graph structural information and distribution uncertainty. Therefore, some complex posterior distributions can be captured by our model. MSVGAE maps scRNA-seq data with high dimensions and high noise into the low-dimensional latent space, which is beneficial for downstream tasks. In particular, MSVGAE can handle extremely sparse data. Before the experiment, we create 24 simulated datasets to simulate various biological scenarios and collect 8 real-world datasets. The experimental results of clustering, visualization and marker genes analysis indicate that MSVGAE model has excellent accuracy and robustness in analyzing scRNA-seq data.\",\"PeriodicalId\":13344,\"journal\":{\"name\":\"IEEE/ACM Transactions on Computational Biology and Bioinformatics\",\"volume\":\"21 6\",\"pages\":\"2280-2291\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Computational Biology and Bioinformatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10675446/\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10675446/","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Multi-Encoder Semi-Implicit Graph Variational Autoencoder to Analyze Single-Cell RNA Sequencing Data
Rapid advances in single-cell RNA sequencing (scRNA-seq) have made it possible to characterize cell states at a high resolution view for large scale library. scRNA-seq data contains a great deal of biological information, which can be mainly used to discover cell subtypes and track cell development. However, traditional methods face many challenges in addressing scRNA-seq data with high dimensions and high sparsity. For better analysis of scRNA-seq data, we propose a new framework called MSVGAE based on variational graph auto-encoder and graph attention networks. Specifically, we introduce multiple encoders to learn features at different scales and control for uninformative features. Moreover, different noises are added to encoders to promote the propagation of graph structural information and distribution uncertainty. Therefore, some complex posterior distributions can be captured by our model. MSVGAE maps scRNA-seq data with high dimensions and high noise into the low-dimensional latent space, which is beneficial for downstream tasks. In particular, MSVGAE can handle extremely sparse data. Before the experiment, we create 24 simulated datasets to simulate various biological scenarios and collect 8 real-world datasets. The experimental results of clustering, visualization and marker genes analysis indicate that MSVGAE model has excellent accuracy and robustness in analyzing scRNA-seq data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
6.70%
发文量
479
审稿时长
3 months
期刊介绍: IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system
期刊最新文献
Guest Editorial Guest Editorial for the 20th Asia Pacific Bioinformatics Conference iAnOxPep: a machine learning model for the identification of anti-oxidative peptides using ensemble learning. DeepLigType: Predicting Ligand Types of Protein-Ligand Binding Sites Using a Deep Learning Model. Performance Comparison between Deep Neural Network and Machine Learning based Classifiers for Huntington Disease Prediction from Human DNA Sequence. AI-based Computational Methods in Early Drug Discovery and Post Market Drug Assessment: A Survey.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1