Matthew Brun, Tyler Perini, Saumya Sinha, Andrew J. Schaefer
{"title":"论多目标整数编程中拉格朗日对偶性的强度","authors":"Matthew Brun, Tyler Perini, Saumya Sinha, Andrew J. Schaefer","doi":"10.1007/s10107-024-02121-z","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the potential of Lagrangian relaxations to generate quality bounds on non-dominated images of multiobjective integer programs (MOIPs). Under some conditions on the relaxed constraints, we show that a set of Lagrangian relaxations can provide bounds that coincide with every bound generated by the convex hull relaxation. We also provide a guarantee of the relative quality of the Lagrangian bound at unsupported solutions. These results imply that, if the relaxed feasible region is bounded, some Lagrangian bounds will be strictly better than some convex hull bounds. We demonstrate that there exist Lagrangian multipliers which are sparse, satisfy a complementary slackness property, and generate tight relaxations at supported solutions. However, if all constraints are dualized, a relaxation can never be tight at an unsupported solution. These results characterize the strength of the Lagrangian dual at efficient solutions of an MOIP.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the strength of Lagrangian duality in multiobjective integer programming\",\"authors\":\"Matthew Brun, Tyler Perini, Saumya Sinha, Andrew J. Schaefer\",\"doi\":\"10.1007/s10107-024-02121-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper investigates the potential of Lagrangian relaxations to generate quality bounds on non-dominated images of multiobjective integer programs (MOIPs). Under some conditions on the relaxed constraints, we show that a set of Lagrangian relaxations can provide bounds that coincide with every bound generated by the convex hull relaxation. We also provide a guarantee of the relative quality of the Lagrangian bound at unsupported solutions. These results imply that, if the relaxed feasible region is bounded, some Lagrangian bounds will be strictly better than some convex hull bounds. We demonstrate that there exist Lagrangian multipliers which are sparse, satisfy a complementary slackness property, and generate tight relaxations at supported solutions. However, if all constraints are dualized, a relaxation can never be tight at an unsupported solution. These results characterize the strength of the Lagrangian dual at efficient solutions of an MOIP.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10107-024-02121-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02121-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
On the strength of Lagrangian duality in multiobjective integer programming
This paper investigates the potential of Lagrangian relaxations to generate quality bounds on non-dominated images of multiobjective integer programs (MOIPs). Under some conditions on the relaxed constraints, we show that a set of Lagrangian relaxations can provide bounds that coincide with every bound generated by the convex hull relaxation. We also provide a guarantee of the relative quality of the Lagrangian bound at unsupported solutions. These results imply that, if the relaxed feasible region is bounded, some Lagrangian bounds will be strictly better than some convex hull bounds. We demonstrate that there exist Lagrangian multipliers which are sparse, satisfy a complementary slackness property, and generate tight relaxations at supported solutions. However, if all constraints are dualized, a relaxation can never be tight at an unsupported solution. These results characterize the strength of the Lagrangian dual at efficient solutions of an MOIP.