VECA:面向志愿者边缘云计算的可靠保密资源集群

Hemanth Sai Yeddulapalli, Mauro Lemus Alarcon, Upasana Roy, Roshan Lal Neupane, Durbek Gafurov, Motahare Mounesan, Saptarshi Debroy, Prasad Calyam
{"title":"VECA:面向志愿者边缘云计算的可靠保密资源集群","authors":"Hemanth Sai Yeddulapalli, Mauro Lemus Alarcon, Upasana Roy, Roshan Lal Neupane, Durbek Gafurov, Motahare Mounesan, Saptarshi Debroy, Prasad Calyam","doi":"arxiv-2409.03057","DOIUrl":null,"url":null,"abstract":"Volunteer Edge-Cloud (VEC) computing has a significant potential to support\nscientific workflows in user communities contributing volunteer edge nodes.\nHowever, managing heterogeneous and intermittent resources to support\nmachine/deep learning (ML/DL) based workflows poses challenges in resource\ngovernance for reliability, and confidentiality for model/data privacy\nprotection. There is a need for approaches to handle the volatility of\nvolunteer edge node availability, and also to scale the confidential\ndata-intensive workflow execution across a large number of VEC nodes. In this\npaper, we present VECA, a reliable and confidential VEC resource clustering\nsolution featuring three-fold methods tailored for executing ML/DL-based\nscientific workflows on VEC resources. Firstly, a capacity-based clustering\napproach enhances system reliability and minimizes VEC node search latency.\nSecondly, a novel two-phase, globally distributed scheduling scheme optimizes\njob allocation based on node attributes and using time-series-based Recurrent\nNeural Networks. Lastly, the integration of confidential computing ensures\nprivacy preservation of the scientific workflows, where model and data\ninformation are not shared with VEC resources providers. We evaluate VECA in a\nFunction-as-a-Service (FaaS) cloud testbed that features OpenFaaS and MicroK8S\nto support two ML/DL-based scientific workflows viz., G2P-Deep (bioinformatics)\nand PAS-ML (health informatics). Results from tested experiments demonstrate\nthat our proposed VECA approach outperforms state-of-the-art methods;\nespecially VECA exhibits a two-fold reduction in VEC node search latency and\nover 20% improvement in productivity rates following execution failures\ncompared to the next best method.","PeriodicalId":501280,"journal":{"name":"arXiv - CS - Networking and Internet Architecture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VECA: Reliable and Confidential Resource Clustering for Volunteer Edge-Cloud Computing\",\"authors\":\"Hemanth Sai Yeddulapalli, Mauro Lemus Alarcon, Upasana Roy, Roshan Lal Neupane, Durbek Gafurov, Motahare Mounesan, Saptarshi Debroy, Prasad Calyam\",\"doi\":\"arxiv-2409.03057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Volunteer Edge-Cloud (VEC) computing has a significant potential to support\\nscientific workflows in user communities contributing volunteer edge nodes.\\nHowever, managing heterogeneous and intermittent resources to support\\nmachine/deep learning (ML/DL) based workflows poses challenges in resource\\ngovernance for reliability, and confidentiality for model/data privacy\\nprotection. There is a need for approaches to handle the volatility of\\nvolunteer edge node availability, and also to scale the confidential\\ndata-intensive workflow execution across a large number of VEC nodes. In this\\npaper, we present VECA, a reliable and confidential VEC resource clustering\\nsolution featuring three-fold methods tailored for executing ML/DL-based\\nscientific workflows on VEC resources. Firstly, a capacity-based clustering\\napproach enhances system reliability and minimizes VEC node search latency.\\nSecondly, a novel two-phase, globally distributed scheduling scheme optimizes\\njob allocation based on node attributes and using time-series-based Recurrent\\nNeural Networks. Lastly, the integration of confidential computing ensures\\nprivacy preservation of the scientific workflows, where model and data\\ninformation are not shared with VEC resources providers. We evaluate VECA in a\\nFunction-as-a-Service (FaaS) cloud testbed that features OpenFaaS and MicroK8S\\nto support two ML/DL-based scientific workflows viz., G2P-Deep (bioinformatics)\\nand PAS-ML (health informatics). Results from tested experiments demonstrate\\nthat our proposed VECA approach outperforms state-of-the-art methods;\\nespecially VECA exhibits a two-fold reduction in VEC node search latency and\\nover 20% improvement in productivity rates following execution failures\\ncompared to the next best method.\",\"PeriodicalId\":501280,\"journal\":{\"name\":\"arXiv - CS - Networking and Internet Architecture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Networking and Internet Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Networking and Internet Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

志愿边缘云(VEC)计算在支持用户社区的科学工作流方面具有巨大潜力,这些用户社区贡献了志愿边缘节点。然而,管理异构和间歇性资源以支持基于机器/深度学习(ML/DL)的工作流,在资源治理的可靠性和模型/数据隐私保护的保密性方面提出了挑战。我们需要一种方法来处理志愿边缘节点可用性的不稳定性,并在大量 VEC 节点上扩展机密数据密集型工作流的执行。在本文中,我们介绍了 VECA,一种可靠的保密 VEC 资源集群解决方案,它具有三重方法,专为在 VEC 资源上执行基于 ML/DL 的科学工作流而量身定制。首先,基于容量的集群方法提高了系统可靠性,并最大限度地减少了 VEC 节点搜索延迟。其次,新颖的两阶段全局分布式调度方案根据节点属性并利用基于时间序列的循环神经网络优化了任务分配。最后,保密计算的集成确保了科学工作流的私密性,模型和数据信息不会与 VEC 资源提供商共享。我们在功能即服务(FaaS)云测试平台上对 VECA 进行了评估,该测试平台以 OpenFaaS 和 MicroK8S 为特色,支持两个基于 ML/DL 的科学工作流,即 G2P-Deep(生物信息学)和 PAS-ML(健康信息学)。测试实验的结果表明,我们提出的 VECA 方法优于最先进的方法;特别是与次好的方法相比,VECA 的 VEC 节点搜索延迟减少了两倍,执行失败后的生产率提高了 20% 以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VECA: Reliable and Confidential Resource Clustering for Volunteer Edge-Cloud Computing
Volunteer Edge-Cloud (VEC) computing has a significant potential to support scientific workflows in user communities contributing volunteer edge nodes. However, managing heterogeneous and intermittent resources to support machine/deep learning (ML/DL) based workflows poses challenges in resource governance for reliability, and confidentiality for model/data privacy protection. There is a need for approaches to handle the volatility of volunteer edge node availability, and also to scale the confidential data-intensive workflow execution across a large number of VEC nodes. In this paper, we present VECA, a reliable and confidential VEC resource clustering solution featuring three-fold methods tailored for executing ML/DL-based scientific workflows on VEC resources. Firstly, a capacity-based clustering approach enhances system reliability and minimizes VEC node search latency. Secondly, a novel two-phase, globally distributed scheduling scheme optimizes job allocation based on node attributes and using time-series-based Recurrent Neural Networks. Lastly, the integration of confidential computing ensures privacy preservation of the scientific workflows, where model and data information are not shared with VEC resources providers. We evaluate VECA in a Function-as-a-Service (FaaS) cloud testbed that features OpenFaaS and MicroK8S to support two ML/DL-based scientific workflows viz., G2P-Deep (bioinformatics) and PAS-ML (health informatics). Results from tested experiments demonstrate that our proposed VECA approach outperforms state-of-the-art methods; especially VECA exhibits a two-fold reduction in VEC node search latency and over 20% improvement in productivity rates following execution failures compared to the next best method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CEF: Connecting Elaborate Federal QKD Networks Age-of-Information and Energy Optimization in Digital Twin Edge Networks Blockchain-Enabled IoV: Secure Communication and Trustworthy Decision-Making Micro-orchestration of RAN functions accelerated in FPGA SoC devices LoRa Communication for Agriculture 4.0: Opportunities, Challenges, and Future Directions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1