{"title":"最小正则性下的无限时谐麦克斯韦方程的 HDG 和 CG 方法","authors":"Gang Chen, Peter Monk, Yangwen Zhang","doi":"10.1007/s10915-024-02643-w","DOIUrl":null,"url":null,"abstract":"<p>We propose to use a hybridizable discontinuous Galerkin (HDG) method combined with the continuous Galerkin (CG) method to approximate Maxwell’s equations. We make two contributions in this paper. First, even though there are many papers using HDG methods to approximate Maxwell’s equations, to our knowledge they all assume that the coefficients are smooth (or constant). Here, we derive optimal convergence estimates for our HDG-CG approximation when the electromagnetic coefficients are <i>piecewise</i> <span>\\(W^{1, \\infty }\\)</span>. This requires new techniques of analysis. Second, we use CG elements to approximate the Lagrange multiplier used to enforce the divergence condition and we obtain a discrete system in which we can decouple the discrete Lagrange multiplier. Because we are using a continuous Lagrange multiplier space, the number of degrees of freedom devoted to this are less than for other HDG methods. We present numerical experiments to confirm our theoretical results.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An HDG and CG Method for the Indefinite Time-Harmonic Maxwell’s Equations Under Minimal Regularity\",\"authors\":\"Gang Chen, Peter Monk, Yangwen Zhang\",\"doi\":\"10.1007/s10915-024-02643-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose to use a hybridizable discontinuous Galerkin (HDG) method combined with the continuous Galerkin (CG) method to approximate Maxwell’s equations. We make two contributions in this paper. First, even though there are many papers using HDG methods to approximate Maxwell’s equations, to our knowledge they all assume that the coefficients are smooth (or constant). Here, we derive optimal convergence estimates for our HDG-CG approximation when the electromagnetic coefficients are <i>piecewise</i> <span>\\\\(W^{1, \\\\infty }\\\\)</span>. This requires new techniques of analysis. Second, we use CG elements to approximate the Lagrange multiplier used to enforce the divergence condition and we obtain a discrete system in which we can decouple the discrete Lagrange multiplier. Because we are using a continuous Lagrange multiplier space, the number of degrees of freedom devoted to this are less than for other HDG methods. We present numerical experiments to confirm our theoretical results.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02643-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02643-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
An HDG and CG Method for the Indefinite Time-Harmonic Maxwell’s Equations Under Minimal Regularity
We propose to use a hybridizable discontinuous Galerkin (HDG) method combined with the continuous Galerkin (CG) method to approximate Maxwell’s equations. We make two contributions in this paper. First, even though there are many papers using HDG methods to approximate Maxwell’s equations, to our knowledge they all assume that the coefficients are smooth (or constant). Here, we derive optimal convergence estimates for our HDG-CG approximation when the electromagnetic coefficients are piecewise\(W^{1, \infty }\). This requires new techniques of analysis. Second, we use CG elements to approximate the Lagrange multiplier used to enforce the divergence condition and we obtain a discrete system in which we can decouple the discrete Lagrange multiplier. Because we are using a continuous Lagrange multiplier space, the number of degrees of freedom devoted to this are less than for other HDG methods. We present numerical experiments to confirm our theoretical results.