最小正则性下的无限时谐麦克斯韦方程的 HDG 和 CG 方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-09-11 DOI:10.1007/s10915-024-02643-w
Gang Chen, Peter Monk, Yangwen Zhang
{"title":"最小正则性下的无限时谐麦克斯韦方程的 HDG 和 CG 方法","authors":"Gang Chen, Peter Monk, Yangwen Zhang","doi":"10.1007/s10915-024-02643-w","DOIUrl":null,"url":null,"abstract":"<p>We propose to use a hybridizable discontinuous Galerkin (HDG) method combined with the continuous Galerkin (CG) method to approximate Maxwell’s equations. We make two contributions in this paper. First, even though there are many papers using HDG methods to approximate Maxwell’s equations, to our knowledge they all assume that the coefficients are smooth (or constant). Here, we derive optimal convergence estimates for our HDG-CG approximation when the electromagnetic coefficients are <i>piecewise</i> <span>\\(W^{1, \\infty }\\)</span>. This requires new techniques of analysis. Second, we use CG elements to approximate the Lagrange multiplier used to enforce the divergence condition and we obtain a discrete system in which we can decouple the discrete Lagrange multiplier. Because we are using a continuous Lagrange multiplier space, the number of degrees of freedom devoted to this are less than for other HDG methods. We present numerical experiments to confirm our theoretical results.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An HDG and CG Method for the Indefinite Time-Harmonic Maxwell’s Equations Under Minimal Regularity\",\"authors\":\"Gang Chen, Peter Monk, Yangwen Zhang\",\"doi\":\"10.1007/s10915-024-02643-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose to use a hybridizable discontinuous Galerkin (HDG) method combined with the continuous Galerkin (CG) method to approximate Maxwell’s equations. We make two contributions in this paper. First, even though there are many papers using HDG methods to approximate Maxwell’s equations, to our knowledge they all assume that the coefficients are smooth (or constant). Here, we derive optimal convergence estimates for our HDG-CG approximation when the electromagnetic coefficients are <i>piecewise</i> <span>\\\\(W^{1, \\\\infty }\\\\)</span>. This requires new techniques of analysis. Second, we use CG elements to approximate the Lagrange multiplier used to enforce the divergence condition and we obtain a discrete system in which we can decouple the discrete Lagrange multiplier. Because we are using a continuous Lagrange multiplier space, the number of degrees of freedom devoted to this are less than for other HDG methods. We present numerical experiments to confirm our theoretical results.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02643-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02643-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们建议使用混合非连续伽勒金(HDG)方法与连续伽勒金(CG)方法相结合来逼近麦克斯韦方程。我们在本文中有两个贡献。首先,尽管有很多论文使用 HDG 方法来近似麦克斯韦方程,但据我们所知,它们都假设系数是平滑的(或常数)。在这里,我们推导出了当电磁系数为片状(W^{1, \infty }\ )时,我们的 HDG-CG 近似的最佳收敛估计值。这需要新的分析技术。其次,我们使用 CG 元素来近似用于强制执行发散条件的拉格朗日乘法器,从而得到一个离散系统,在这个系统中,我们可以解耦离散拉格朗日乘法器。由于我们使用的是连续的拉格朗日乘数空间,因此与其他 HDG 方法相比,用于此的自由度较少。我们通过数值实验来证实我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An HDG and CG Method for the Indefinite Time-Harmonic Maxwell’s Equations Under Minimal Regularity

We propose to use a hybridizable discontinuous Galerkin (HDG) method combined with the continuous Galerkin (CG) method to approximate Maxwell’s equations. We make two contributions in this paper. First, even though there are many papers using HDG methods to approximate Maxwell’s equations, to our knowledge they all assume that the coefficients are smooth (or constant). Here, we derive optimal convergence estimates for our HDG-CG approximation when the electromagnetic coefficients are piecewise \(W^{1, \infty }\). This requires new techniques of analysis. Second, we use CG elements to approximate the Lagrange multiplier used to enforce the divergence condition and we obtain a discrete system in which we can decouple the discrete Lagrange multiplier. Because we are using a continuous Lagrange multiplier space, the number of degrees of freedom devoted to this are less than for other HDG methods. We present numerical experiments to confirm our theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1