{"title":"胶体量子点: 3. 量子点结构的分子动力学模拟","authors":"A. V. Nevidimov, V. F. Razumov","doi":"10.1134/s0018143924700176","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The results of molecular dynamics simulation of the crystal structure of the currently most studied CQDs, based on cadmium selenide nanoparticles, are presented, and issues concerning the structure of the ligand shell of these nanoparticles, primarily made of trioctylphosphine (TOP) and trioctylphosphine oxide (TOPO) molecules, which act as a medium and as precursors in the chemical reaction that results in the formation of CQDs, are discussed in detail.</p>","PeriodicalId":12893,"journal":{"name":"High Energy Chemistry","volume":"26 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Colloidal Quantum Dots: 3. Molecular Dynamics Simulation of Quantum Dot Structure\",\"authors\":\"A. V. Nevidimov, V. F. Razumov\",\"doi\":\"10.1134/s0018143924700176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The results of molecular dynamics simulation of the crystal structure of the currently most studied CQDs, based on cadmium selenide nanoparticles, are presented, and issues concerning the structure of the ligand shell of these nanoparticles, primarily made of trioctylphosphine (TOP) and trioctylphosphine oxide (TOPO) molecules, which act as a medium and as precursors in the chemical reaction that results in the formation of CQDs, are discussed in detail.</p>\",\"PeriodicalId\":12893,\"journal\":{\"name\":\"High Energy Chemistry\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Energy Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1134/s0018143924700176\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1134/s0018143924700176","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The results of molecular dynamics simulation of the crystal structure of the currently most studied CQDs, based on cadmium selenide nanoparticles, are presented, and issues concerning the structure of the ligand shell of these nanoparticles, primarily made of trioctylphosphine (TOP) and trioctylphosphine oxide (TOPO) molecules, which act as a medium and as precursors in the chemical reaction that results in the formation of CQDs, are discussed in detail.
期刊介绍:
High Energy Chemistry publishes original articles, reviews, and short communications on molecular and supramolecular photochemistry, photobiology, radiation chemistry, plasma chemistry, chemistry of nanosized systems, chemistry of new atoms, processes and materials for optical information systems and other areas of high energy chemistry. It publishes theoretical and experimental studies in all areas of high energy chemistry, such as the interaction of high-energy particles with matter, the nature and reactivity of short-lived species induced by the action of particle and electromagnetic radiation or hot atoms on substances in their gaseous and condensed states, and chemical processes initiated in organic and inorganic systems by high-energy radiation.