Francesco Vitale, Stephen A. Church, Daniel Repp, Karthika S. Sunil, Mario Ziegler, Marco Diegel, Andrea Dellith, Thi-Hien Do, Sheng-Di Lin, Jer-Shing Huang, Thomas Pertsch, Patrick Parkinson, Carsten Ronning
{"title":"紫外混合质子纳米线激光器尺寸和基底性能的光学特性分析","authors":"Francesco Vitale, Stephen A. Church, Daniel Repp, Karthika S. Sunil, Mario Ziegler, Marco Diegel, Andrea Dellith, Thi-Hien Do, Sheng-Di Lin, Jer-Shing Huang, Thomas Pertsch, Patrick Parkinson, Carsten Ronning","doi":"10.1002/adom.202401301","DOIUrl":null,"url":null,"abstract":"<p>Nanowire-based plasmonic lasers are now established as nano-sources of coherent radiation, appearing as suitable candidates for integration into next-generation nanophotonic circuitry. However, compared to their photonic counterparts, their relatively high losses and large lasing thresholds still pose a burdening constraint on their scalability. In this study, the lasing characteristics of zinc oxide (ZnO) nanowires on silver (Ag) and aluminum (Al) substrates, operating as optically-pumped short-wavelength plasmonic nanolasers, are systematically investigated in combination with the size-dependent performance of the hybrid cavity. A nanomanipulation-assisted single nanowire optical characterization combined with high-throughput photoluminescence spectroscopy enabled the correlation of the lasing characteristics to the metal substrate and the nanowire diameter. The results evidence that the coupling between excitons and surface plasmons is closely tied to the relationship between substrate dispersive behavior and cavity diameter. Such coupling dictates the degree to which the lasing character, be it more plasmonic- or photonic-like, can define the stimulated emission features and, as a result, the device performance.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 29","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202401301","citationCount":"0","resultStr":"{\"title\":\"Optical Characterization of Size- and Substrate-Dependent Performance of Ultraviolet Hybrid Plasmonic Nanowire Lasers\",\"authors\":\"Francesco Vitale, Stephen A. Church, Daniel Repp, Karthika S. Sunil, Mario Ziegler, Marco Diegel, Andrea Dellith, Thi-Hien Do, Sheng-Di Lin, Jer-Shing Huang, Thomas Pertsch, Patrick Parkinson, Carsten Ronning\",\"doi\":\"10.1002/adom.202401301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanowire-based plasmonic lasers are now established as nano-sources of coherent radiation, appearing as suitable candidates for integration into next-generation nanophotonic circuitry. However, compared to their photonic counterparts, their relatively high losses and large lasing thresholds still pose a burdening constraint on their scalability. In this study, the lasing characteristics of zinc oxide (ZnO) nanowires on silver (Ag) and aluminum (Al) substrates, operating as optically-pumped short-wavelength plasmonic nanolasers, are systematically investigated in combination with the size-dependent performance of the hybrid cavity. A nanomanipulation-assisted single nanowire optical characterization combined with high-throughput photoluminescence spectroscopy enabled the correlation of the lasing characteristics to the metal substrate and the nanowire diameter. The results evidence that the coupling between excitons and surface plasmons is closely tied to the relationship between substrate dispersive behavior and cavity diameter. Such coupling dictates the degree to which the lasing character, be it more plasmonic- or photonic-like, can define the stimulated emission features and, as a result, the device performance.</p>\",\"PeriodicalId\":116,\"journal\":{\"name\":\"Advanced Optical Materials\",\"volume\":\"12 29\",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202401301\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adom.202401301\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202401301","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Optical Characterization of Size- and Substrate-Dependent Performance of Ultraviolet Hybrid Plasmonic Nanowire Lasers
Nanowire-based plasmonic lasers are now established as nano-sources of coherent radiation, appearing as suitable candidates for integration into next-generation nanophotonic circuitry. However, compared to their photonic counterparts, their relatively high losses and large lasing thresholds still pose a burdening constraint on their scalability. In this study, the lasing characteristics of zinc oxide (ZnO) nanowires on silver (Ag) and aluminum (Al) substrates, operating as optically-pumped short-wavelength plasmonic nanolasers, are systematically investigated in combination with the size-dependent performance of the hybrid cavity. A nanomanipulation-assisted single nanowire optical characterization combined with high-throughput photoluminescence spectroscopy enabled the correlation of the lasing characteristics to the metal substrate and the nanowire diameter. The results evidence that the coupling between excitons and surface plasmons is closely tied to the relationship between substrate dispersive behavior and cavity diameter. Such coupling dictates the degree to which the lasing character, be it more plasmonic- or photonic-like, can define the stimulated emission features and, as a result, the device performance.
期刊介绍:
Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.