CLC-UKET 数据集:英国就业法庭案件结果预测基准

Huiyuan Xie, Felix Steffek, Joana Ribeiro de Faria, Christine Carter, Jonathan Rutherford
{"title":"CLC-UKET 数据集:英国就业法庭案件结果预测基准","authors":"Huiyuan Xie, Felix Steffek, Joana Ribeiro de Faria, Christine Carter, Jonathan Rutherford","doi":"arxiv-2409.08098","DOIUrl":null,"url":null,"abstract":"This paper explores the intersection of technological innovation and access\nto justice by developing a benchmark for predicting case outcomes in the UK\nEmployment Tribunal (UKET). To address the challenge of extensive manual\nannotation, the study employs a large language model (LLM) for automatic\nannotation, resulting in the creation of the CLC-UKET dataset. The dataset\nconsists of approximately 19,000 UKET cases and their metadata. Comprehensive\nlegal annotations cover facts, claims, precedent references, statutory\nreferences, case outcomes, reasons and jurisdiction codes. Facilitated by the\nCLC-UKET data, we examine a multi-class case outcome prediction task in the\nUKET. Human predictions are collected to establish a performance reference for\nmodel comparison. Empirical results from baseline models indicate that\nfinetuned transformer models outperform zero-shot and few-shot LLMs on the UKET\nprediction task. The performance of zero-shot LLMs can be enhanced by\nintegrating task-related information into few-shot examples. We hope that the\nCLC-UKET dataset, along with human annotations and empirical findings, can\nserve as a valuable benchmark for employment-related dispute resolution.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"157 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The CLC-UKET Dataset: Benchmarking Case Outcome Prediction for the UK Employment Tribunal\",\"authors\":\"Huiyuan Xie, Felix Steffek, Joana Ribeiro de Faria, Christine Carter, Jonathan Rutherford\",\"doi\":\"arxiv-2409.08098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the intersection of technological innovation and access\\nto justice by developing a benchmark for predicting case outcomes in the UK\\nEmployment Tribunal (UKET). To address the challenge of extensive manual\\nannotation, the study employs a large language model (LLM) for automatic\\nannotation, resulting in the creation of the CLC-UKET dataset. The dataset\\nconsists of approximately 19,000 UKET cases and their metadata. Comprehensive\\nlegal annotations cover facts, claims, precedent references, statutory\\nreferences, case outcomes, reasons and jurisdiction codes. Facilitated by the\\nCLC-UKET data, we examine a multi-class case outcome prediction task in the\\nUKET. Human predictions are collected to establish a performance reference for\\nmodel comparison. Empirical results from baseline models indicate that\\nfinetuned transformer models outperform zero-shot and few-shot LLMs on the UKET\\nprediction task. The performance of zero-shot LLMs can be enhanced by\\nintegrating task-related information into few-shot examples. We hope that the\\nCLC-UKET dataset, along with human annotations and empirical findings, can\\nserve as a valuable benchmark for employment-related dispute resolution.\",\"PeriodicalId\":501030,\"journal\":{\"name\":\"arXiv - CS - Computation and Language\",\"volume\":\"157 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computation and Language\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文通过开发英国就业法庭(UKET)案件结果预测基准,探讨了技术创新与诉诸司法的交叉点。为了应对大量人工标注的挑战,本研究采用了大型语言模型(LLM)进行自动标注,从而创建了 CLC-UKET 数据集。该数据集包含约 19,000 个 UKET 案例及其元数据。全面的法律注释涵盖事实、诉求、先例参考、法规参考、案件结果、理由和管辖区代码。在 CLC-UKET 数据的帮助下,我们研究了 UKET 中的多类案件结果预测任务。我们收集了人工预测结果,以建立模型比较的性能参考。基线模型的实证结果表明,在 UKET 预测任务中,经过inetuned transformer 模型的表现优于零次和少量 LLM。通过将与任务相关的信息整合到少数几个实例中,可以提高零镜头 LLM 的性能。我们希望CLC-UKET数据集以及人类注释和实证研究结果能够成为就业相关争议解决的宝贵基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The CLC-UKET Dataset: Benchmarking Case Outcome Prediction for the UK Employment Tribunal
This paper explores the intersection of technological innovation and access to justice by developing a benchmark for predicting case outcomes in the UK Employment Tribunal (UKET). To address the challenge of extensive manual annotation, the study employs a large language model (LLM) for automatic annotation, resulting in the creation of the CLC-UKET dataset. The dataset consists of approximately 19,000 UKET cases and their metadata. Comprehensive legal annotations cover facts, claims, precedent references, statutory references, case outcomes, reasons and jurisdiction codes. Facilitated by the CLC-UKET data, we examine a multi-class case outcome prediction task in the UKET. Human predictions are collected to establish a performance reference for model comparison. Empirical results from baseline models indicate that finetuned transformer models outperform zero-shot and few-shot LLMs on the UKET prediction task. The performance of zero-shot LLMs can be enhanced by integrating task-related information into few-shot examples. We hope that the CLC-UKET dataset, along with human annotations and empirical findings, can serve as a valuable benchmark for employment-related dispute resolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LLMs + Persona-Plug = Personalized LLMs MEOW: MEMOry Supervised LLM Unlearning Via Inverted Facts Extract-and-Abstract: Unifying Extractive and Abstractive Summarization within Single Encoder-Decoder Framework Development and bilingual evaluation of Japanese medical large language model within reasonably low computational resources Human-like Affective Cognition in Foundation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1