通过减少嵌入变异性实现稳定的语言模型预训练

Woojin Chung, Jiwoo Hong, Na Min An, James Thorne, Se-Young Yun
{"title":"通过减少嵌入变异性实现稳定的语言模型预训练","authors":"Woojin Chung, Jiwoo Hong, Na Min An, James Thorne, Se-Young Yun","doi":"arxiv-2409.07787","DOIUrl":null,"url":null,"abstract":"Stable pre-training is essential for achieving better-performing language\nmodels. However, tracking pre-training stability by calculating gradient\nvariance at every step is impractical due to the significant computational\ncosts. We explore Token Embedding Variability (TEV) as a simple and efficient\nproxy for assessing pre-training stability in language models with pre-layer\nnormalization, given that shallower layers are more prone to gradient explosion\n(section 2.2). Moreover, we propose Multi-head Low-Rank Attention (MLRA) as an\narchitecture to alleviate such instability by limiting the exponential growth\nof output embedding variance, thereby preventing the gradient explosion\n(section 3.2). Empirical results on GPT-2 with MLRA demonstrate increased\nstability and lower perplexity, particularly in deeper models.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable Language Model Pre-training by Reducing Embedding Variability\",\"authors\":\"Woojin Chung, Jiwoo Hong, Na Min An, James Thorne, Se-Young Yun\",\"doi\":\"arxiv-2409.07787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stable pre-training is essential for achieving better-performing language\\nmodels. However, tracking pre-training stability by calculating gradient\\nvariance at every step is impractical due to the significant computational\\ncosts. We explore Token Embedding Variability (TEV) as a simple and efficient\\nproxy for assessing pre-training stability in language models with pre-layer\\nnormalization, given that shallower layers are more prone to gradient explosion\\n(section 2.2). Moreover, we propose Multi-head Low-Rank Attention (MLRA) as an\\narchitecture to alleviate such instability by limiting the exponential growth\\nof output embedding variance, thereby preventing the gradient explosion\\n(section 3.2). Empirical results on GPT-2 with MLRA demonstrate increased\\nstability and lower perplexity, particularly in deeper models.\",\"PeriodicalId\":501030,\"journal\":{\"name\":\"arXiv - CS - Computation and Language\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computation and Language\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

稳定的预训练对于获得性能更好的语言模型至关重要。然而,通过计算每一步的梯度方差来跟踪预训练的稳定性是不切实际的,因为计算成本很高。考虑到较浅的层更容易发生梯度爆炸(2.2 节),我们探索了代词嵌入变异性(TEV),将其作为评估预分层规范化语言模型预训练稳定性的一种简单而有效的代理方法。此外,我们还提出了多头低阶注意力(MLRA)架构,通过限制输出嵌入方差的指数增长来缓解这种不稳定性,从而防止梯度爆炸(3.2 节)。使用 MLRA 的 GPT-2 的实证结果表明,稳定性提高了,复杂度降低了,尤其是在更深的模型中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stable Language Model Pre-training by Reducing Embedding Variability
Stable pre-training is essential for achieving better-performing language models. However, tracking pre-training stability by calculating gradient variance at every step is impractical due to the significant computational costs. We explore Token Embedding Variability (TEV) as a simple and efficient proxy for assessing pre-training stability in language models with pre-layer normalization, given that shallower layers are more prone to gradient explosion (section 2.2). Moreover, we propose Multi-head Low-Rank Attention (MLRA) as an architecture to alleviate such instability by limiting the exponential growth of output embedding variance, thereby preventing the gradient explosion (section 3.2). Empirical results on GPT-2 with MLRA demonstrate increased stability and lower perplexity, particularly in deeper models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LLMs + Persona-Plug = Personalized LLMs MEOW: MEMOry Supervised LLM Unlearning Via Inverted Facts Extract-and-Abstract: Unifying Extractive and Abstractive Summarization within Single Encoder-Decoder Framework Development and bilingual evaluation of Japanese medical large language model within reasonably low computational resources Human-like Affective Cognition in Foundation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1