利用 CNN 和主成分分析实现音频压缩中的动态差异控制

Asish Debnath, Uttam Kr. Mondal
{"title":"利用 CNN 和主成分分析实现音频压缩中的动态差异控制","authors":"Asish Debnath, Uttam Kr. Mondal","doi":"10.1007/s41870-024-02155-8","DOIUrl":null,"url":null,"abstract":"<p>This study addresses challenges arising from large audio file storage needs and rising network bandwidth demands. In this paper, a novel audio codec design is proposed, integrating audio sample segregation, user input variance controlled principal component analysis (PCA), and Convolutional Neural Network (CNN). PCA computes sample variance feature vectors, extracts principal components, and determines compression rates. This method leverages PCA and CNN to compress audio efficiently, yielding high-quality reconstructed audio. Experimental results show that increasing PCA components generally improves PSNR values, while decreasing components may reduce CR, MSE, and other error metrics. The simulation results are analyzed and compared to other existing lossless audio encoding schemes with various statistical and robustness features.</p>","PeriodicalId":14138,"journal":{"name":"International Journal of Information Technology","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging CNN and principal component analysis for dynamic variance control in audio compression\",\"authors\":\"Asish Debnath, Uttam Kr. Mondal\",\"doi\":\"10.1007/s41870-024-02155-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study addresses challenges arising from large audio file storage needs and rising network bandwidth demands. In this paper, a novel audio codec design is proposed, integrating audio sample segregation, user input variance controlled principal component analysis (PCA), and Convolutional Neural Network (CNN). PCA computes sample variance feature vectors, extracts principal components, and determines compression rates. This method leverages PCA and CNN to compress audio efficiently, yielding high-quality reconstructed audio. Experimental results show that increasing PCA components generally improves PSNR values, while decreasing components may reduce CR, MSE, and other error metrics. The simulation results are analyzed and compared to other existing lossless audio encoding schemes with various statistical and robustness features.</p>\",\"PeriodicalId\":14138,\"journal\":{\"name\":\"International Journal of Information Technology\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41870-024-02155-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-024-02155-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究解决了大量音频文件存储需求和不断增长的网络带宽需求所带来的挑战。本文提出了一种新型音频编解码器设计,将音频样本分离、用户输入方差控制主成分分析(PCA)和卷积神经网络(CNN)整合在一起。PCA 计算样本方差特征向量、提取主成分并确定压缩率。该方法利用 PCA 和 CNN 高效压缩音频,从而获得高质量的重构音频。实验结果表明,增加 PCA 分量通常会提高 PSNR 值,而减少分量则会降低 CR、MSE 和其他误差指标。仿真结果得到了分析,并与其他具有各种统计和鲁棒性特征的现有无损音频编码方案进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leveraging CNN and principal component analysis for dynamic variance control in audio compression

This study addresses challenges arising from large audio file storage needs and rising network bandwidth demands. In this paper, a novel audio codec design is proposed, integrating audio sample segregation, user input variance controlled principal component analysis (PCA), and Convolutional Neural Network (CNN). PCA computes sample variance feature vectors, extracts principal components, and determines compression rates. This method leverages PCA and CNN to compress audio efficiently, yielding high-quality reconstructed audio. Experimental results show that increasing PCA components generally improves PSNR values, while decreasing components may reduce CR, MSE, and other error metrics. The simulation results are analyzed and compared to other existing lossless audio encoding schemes with various statistical and robustness features.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical cryptanalysis of seven classical lightweight ciphers CNN-BO-LSTM: an ensemble framework for prognosis of liver cancer Architecting lymphoma fusion: PROMETHEE-II guided optimization of combination therapeutic synergy RBCA-ETS: enhancing extractive text summarization with contextual embedding and word-level attention RAMD and transient analysis of a juice clarification unit in sugar plants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1