催化脑电信号分析:挖掘机器学习智能 K 近邻离群点检测的潜力

Abid Aymen, Salim El Khediri, Adel Thaljaoui, Moahmed Miladi, Abdennaceur Kachouri
{"title":"催化脑电信号分析:挖掘机器学习智能 K 近邻离群点检测的潜力","authors":"Abid Aymen, Salim El Khediri, Adel Thaljaoui, Moahmed Miladi, Abdennaceur Kachouri","doi":"10.1007/s41870-024-02123-2","DOIUrl":null,"url":null,"abstract":"<p>Electroencephalogram (EEG) data are susceptible to artifacts, such as lapses in concentration or poor imagination, which can significantly impact the accuracy of disease diagnosis in e-health applications. To mitigate this issue, the use of machine learning (ML) and potentially artificial intelligence (AI) solutions to accurately identify outliers becomes crucial. Unlike many AI methods that incorporate unnecessary or redundant input variables, our study focuses on detecting anomalous values in EEG data through the K nearest neighbor (KNN) process and Euclidean distance metric. Our proposed unsupervised non-parametric algorithm, known as the smart KNN outlier detector (SKOD), eliminates the need for initial parameter configurations such as the number of neighbors (K), while achieving high performance. Evaluation of SKOD using real EEG data from 140 trials demonstrated sensitivity and specificity exceeding 60%, with nearly perfect accuracy in detecting outliers reaching close to 100%.</p>","PeriodicalId":14138,"journal":{"name":"International Journal of Information Technology","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalyzing EEG signal analysis: unveiling the potential of machine learning-enabled smart K nearest neighbor outlier detection\",\"authors\":\"Abid Aymen, Salim El Khediri, Adel Thaljaoui, Moahmed Miladi, Abdennaceur Kachouri\",\"doi\":\"10.1007/s41870-024-02123-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electroencephalogram (EEG) data are susceptible to artifacts, such as lapses in concentration or poor imagination, which can significantly impact the accuracy of disease diagnosis in e-health applications. To mitigate this issue, the use of machine learning (ML) and potentially artificial intelligence (AI) solutions to accurately identify outliers becomes crucial. Unlike many AI methods that incorporate unnecessary or redundant input variables, our study focuses on detecting anomalous values in EEG data through the K nearest neighbor (KNN) process and Euclidean distance metric. Our proposed unsupervised non-parametric algorithm, known as the smart KNN outlier detector (SKOD), eliminates the need for initial parameter configurations such as the number of neighbors (K), while achieving high performance. Evaluation of SKOD using real EEG data from 140 trials demonstrated sensitivity and specificity exceeding 60%, with nearly perfect accuracy in detecting outliers reaching close to 100%.</p>\",\"PeriodicalId\":14138,\"journal\":{\"name\":\"International Journal of Information Technology\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41870-024-02123-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-024-02123-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑电图(EEG)数据很容易受到注意力不集中或想象力贫乏等假象的影响,这会严重影响电子健康应用中疾病诊断的准确性。为缓解这一问题,使用机器学习(ML)和潜在的人工智能(AI)解决方案来准确识别异常值变得至关重要。与许多包含不必要或冗余输入变量的人工智能方法不同,我们的研究侧重于通过 K 近邻(KNN)过程和欧氏距离度量检测脑电图数据中的异常值。我们提出的无监督非参数算法被称为智能 KNN 离群值检测器(SKOD),它无需初始参数配置,如邻居数(K),同时还能实现高性能。使用来自 140 个试验的真实脑电图数据对 SKOD 进行的评估表明,其灵敏度和特异性均超过了 60%,检测异常值的准确率接近 100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Catalyzing EEG signal analysis: unveiling the potential of machine learning-enabled smart K nearest neighbor outlier detection

Electroencephalogram (EEG) data are susceptible to artifacts, such as lapses in concentration or poor imagination, which can significantly impact the accuracy of disease diagnosis in e-health applications. To mitigate this issue, the use of machine learning (ML) and potentially artificial intelligence (AI) solutions to accurately identify outliers becomes crucial. Unlike many AI methods that incorporate unnecessary or redundant input variables, our study focuses on detecting anomalous values in EEG data through the K nearest neighbor (KNN) process and Euclidean distance metric. Our proposed unsupervised non-parametric algorithm, known as the smart KNN outlier detector (SKOD), eliminates the need for initial parameter configurations such as the number of neighbors (K), while achieving high performance. Evaluation of SKOD using real EEG data from 140 trials demonstrated sensitivity and specificity exceeding 60%, with nearly perfect accuracy in detecting outliers reaching close to 100%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical cryptanalysis of seven classical lightweight ciphers CNN-BO-LSTM: an ensemble framework for prognosis of liver cancer Architecting lymphoma fusion: PROMETHEE-II guided optimization of combination therapeutic synergy RBCA-ETS: enhancing extractive text summarization with contextual embedding and word-level attention RAMD and transient analysis of a juice clarification unit in sugar plants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1