Dang Dung Le, Huy-Cuong Nguyen, Tuan-Anh Nguyen, Xuan Huy Nguyen
{"title":"研究横向钢筋配置对 GFRP 加固混凝土梁扭转行为的影响:实验和数值分析","authors":"Dang Dung Le, Huy-Cuong Nguyen, Tuan-Anh Nguyen, Xuan Huy Nguyen","doi":"10.1007/s12205-024-2218-6","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the influence of various transverse reinforcement configurations on the torsional performance of glass fiber reinforced plastic (GFRP) reinforced concrete beams. A comprehensive experimental investigation includes five specimens, each characterized by unique transverse reinforcement designs in terms of stirrup spacing and inclination angles. The implementation of transverse torsional reinforcements within the beams exhibited a remarkable post-cracking hardening response, contributing to enhanced strength recovery. The experimental findings are subsequently compared with a reliable three-dimensional finite element model developed using the ABAQUS software. Finally, a parametric study is conducted to examine the influence of concrete and GFRP bar strength, along with longitudinal and transverse reinforcement ratios, on the torsional behavior of GFRP reinforced concrete beams. The results emphasize the significant impact of concrete tensile strength and transverse reinforcement on the cracking torque, while the parameters related to longitudinal reinforcement have only marginal effects.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the Influence of Transverse Reinforcement Configuration on the Torsional Behavior of GFRP-Reinforced Concrete Beams: An Experimental and Numerical Analysis\",\"authors\":\"Dang Dung Le, Huy-Cuong Nguyen, Tuan-Anh Nguyen, Xuan Huy Nguyen\",\"doi\":\"10.1007/s12205-024-2218-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates the influence of various transverse reinforcement configurations on the torsional performance of glass fiber reinforced plastic (GFRP) reinforced concrete beams. A comprehensive experimental investigation includes five specimens, each characterized by unique transverse reinforcement designs in terms of stirrup spacing and inclination angles. The implementation of transverse torsional reinforcements within the beams exhibited a remarkable post-cracking hardening response, contributing to enhanced strength recovery. The experimental findings are subsequently compared with a reliable three-dimensional finite element model developed using the ABAQUS software. Finally, a parametric study is conducted to examine the influence of concrete and GFRP bar strength, along with longitudinal and transverse reinforcement ratios, on the torsional behavior of GFRP reinforced concrete beams. The results emphasize the significant impact of concrete tensile strength and transverse reinforcement on the cracking torque, while the parameters related to longitudinal reinforcement have only marginal effects.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12205-024-2218-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-2218-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigating the Influence of Transverse Reinforcement Configuration on the Torsional Behavior of GFRP-Reinforced Concrete Beams: An Experimental and Numerical Analysis
This study investigates the influence of various transverse reinforcement configurations on the torsional performance of glass fiber reinforced plastic (GFRP) reinforced concrete beams. A comprehensive experimental investigation includes five specimens, each characterized by unique transverse reinforcement designs in terms of stirrup spacing and inclination angles. The implementation of transverse torsional reinforcements within the beams exhibited a remarkable post-cracking hardening response, contributing to enhanced strength recovery. The experimental findings are subsequently compared with a reliable three-dimensional finite element model developed using the ABAQUS software. Finally, a parametric study is conducted to examine the influence of concrete and GFRP bar strength, along with longitudinal and transverse reinforcement ratios, on the torsional behavior of GFRP reinforced concrete beams. The results emphasize the significant impact of concrete tensile strength and transverse reinforcement on the cracking torque, while the parameters related to longitudinal reinforcement have only marginal effects.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.