{"title":"PBb-LMFO:用于癌症诊断的征费飞行集成 MFO 启发集合模型","authors":"Sabita Rani Behera, Bibudhendu Pati, Sasmita Parida","doi":"10.1007/s41870-024-02122-3","DOIUrl":null,"url":null,"abstract":"<p>To build a Cancer prediction model based on ML, one needs data of a certain sort, such as gene expression data or microarray data. To reduce the dataset's dimensionality, feature selection is proposed as an optimal solution to high dimensionality challenges and to deal with microarray data, this research work aims to perform the 2-stage feature selection. In the initial stage, the Particle Swarm Optimization (PSO) and Bare-bone PSO (BBPSO) are applied to the dataset separately. Then the common features selected by PSO and BBPSO are considered. Then Levy Flight Moth Flame Optimization (LFMFO) is applied to choose the final optimal set of features. Basic existing ML classifiers are used for the first prediction. Afterwards, the Majority Voting technique is applied to develop the ensemble technique. The proposed model is developed over four Cancer microarray datasets, including CNS, Lung Cancer, Ovarian Cancer, and Breast Cancer. The experimental analysis presents the proposed model obtains the highest accuracy of 98.81% for the Ovarian Cancer dataset.</p>","PeriodicalId":14138,"journal":{"name":"International Journal of Information Technology","volume":"391 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PBb-LMFO: a levy flight integrated MFO inspired ensemble model for cancer diagnosis\",\"authors\":\"Sabita Rani Behera, Bibudhendu Pati, Sasmita Parida\",\"doi\":\"10.1007/s41870-024-02122-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To build a Cancer prediction model based on ML, one needs data of a certain sort, such as gene expression data or microarray data. To reduce the dataset's dimensionality, feature selection is proposed as an optimal solution to high dimensionality challenges and to deal with microarray data, this research work aims to perform the 2-stage feature selection. In the initial stage, the Particle Swarm Optimization (PSO) and Bare-bone PSO (BBPSO) are applied to the dataset separately. Then the common features selected by PSO and BBPSO are considered. Then Levy Flight Moth Flame Optimization (LFMFO) is applied to choose the final optimal set of features. Basic existing ML classifiers are used for the first prediction. Afterwards, the Majority Voting technique is applied to develop the ensemble technique. The proposed model is developed over four Cancer microarray datasets, including CNS, Lung Cancer, Ovarian Cancer, and Breast Cancer. The experimental analysis presents the proposed model obtains the highest accuracy of 98.81% for the Ovarian Cancer dataset.</p>\",\"PeriodicalId\":14138,\"journal\":{\"name\":\"International Journal of Information Technology\",\"volume\":\"391 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41870-024-02122-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-024-02122-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
要建立基于 ML 的癌症预测模型,需要一定类型的数据,如基因表达数据或微阵列数据。为了降低数据集的维度,特征选择被认为是解决高维度挑战的最佳方案,而为了处理微阵列数据,本研究工作旨在进行两阶段特征选择。在初始阶段,粒子群优化(PSO)和裸粒子群优化(BBPSO)分别应用于数据集。然后考虑 PSO 和 BBPSO 选出的共同特征。然后应用利维飞蛾火焰优化(LFMFO)来选择最终的最优特征集。现有的基本 ML 分类器用于首次预测。然后,应用多数票技术开发集合技术。所提出的模型是在中枢神经系统、肺癌、卵巢癌和乳腺癌等四个癌症微阵列数据集上开发的。实验分析表明,所提出的模型在卵巢癌数据集上获得了 98.81% 的最高准确率。
PBb-LMFO: a levy flight integrated MFO inspired ensemble model for cancer diagnosis
To build a Cancer prediction model based on ML, one needs data of a certain sort, such as gene expression data or microarray data. To reduce the dataset's dimensionality, feature selection is proposed as an optimal solution to high dimensionality challenges and to deal with microarray data, this research work aims to perform the 2-stage feature selection. In the initial stage, the Particle Swarm Optimization (PSO) and Bare-bone PSO (BBPSO) are applied to the dataset separately. Then the common features selected by PSO and BBPSO are considered. Then Levy Flight Moth Flame Optimization (LFMFO) is applied to choose the final optimal set of features. Basic existing ML classifiers are used for the first prediction. Afterwards, the Majority Voting technique is applied to develop the ensemble technique. The proposed model is developed over four Cancer microarray datasets, including CNS, Lung Cancer, Ovarian Cancer, and Breast Cancer. The experimental analysis presents the proposed model obtains the highest accuracy of 98.81% for the Ovarian Cancer dataset.