{"title":"GPU 加速 mapreduce 的实现:使用 hadoop 和 openCL 进行乳腺癌检测和计算密集型工作","authors":"Hamza Ouhakki, Abdelali Elmoufidi","doi":"10.1007/s41870-024-02171-8","DOIUrl":null,"url":null,"abstract":"<p>Abstract-In the realm of distributed computing for large-scale data processing, MapReduce stands out for its efficiency. However, as tasks become increasingly compute-intensive, it faces challenges in single-node performance. In the context of breast cancer detection, particularly with image data, a new approach has emerged to enhance MapReduce through GPU acceleration. This implementation, executed using Hadoop and OpenCL, targets a general and cost-effective hardware platform, seamlessly integrating into Apache Hadoop. Tailored for a heterogeneous multi-machine and multicore architecture, this solution addresses the compute-intensive nature of big data applications in breast cancer image analysis. Remarkably, the implementation has achieved a significant nearly 13-fold improvement in performance, without the need for additional optimizations.</p>","PeriodicalId":14138,"journal":{"name":"International Journal of Information Technology","volume":"390 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An implementation of GPU accelerated mapreduce: using hadoop with openCL for breast cancer detection and compute-intensive jobs\",\"authors\":\"Hamza Ouhakki, Abdelali Elmoufidi\",\"doi\":\"10.1007/s41870-024-02171-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Abstract-In the realm of distributed computing for large-scale data processing, MapReduce stands out for its efficiency. However, as tasks become increasingly compute-intensive, it faces challenges in single-node performance. In the context of breast cancer detection, particularly with image data, a new approach has emerged to enhance MapReduce through GPU acceleration. This implementation, executed using Hadoop and OpenCL, targets a general and cost-effective hardware platform, seamlessly integrating into Apache Hadoop. Tailored for a heterogeneous multi-machine and multicore architecture, this solution addresses the compute-intensive nature of big data applications in breast cancer image analysis. Remarkably, the implementation has achieved a significant nearly 13-fold improvement in performance, without the need for additional optimizations.</p>\",\"PeriodicalId\":14138,\"journal\":{\"name\":\"International Journal of Information Technology\",\"volume\":\"390 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41870-024-02171-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-024-02171-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An implementation of GPU accelerated mapreduce: using hadoop with openCL for breast cancer detection and compute-intensive jobs
Abstract-In the realm of distributed computing for large-scale data processing, MapReduce stands out for its efficiency. However, as tasks become increasingly compute-intensive, it faces challenges in single-node performance. In the context of breast cancer detection, particularly with image data, a new approach has emerged to enhance MapReduce through GPU acceleration. This implementation, executed using Hadoop and OpenCL, targets a general and cost-effective hardware platform, seamlessly integrating into Apache Hadoop. Tailored for a heterogeneous multi-machine and multicore architecture, this solution addresses the compute-intensive nature of big data applications in breast cancer image analysis. Remarkably, the implementation has achieved a significant nearly 13-fold improvement in performance, without the need for additional optimizations.