GPU 加速 mapreduce 的实现:使用 hadoop 和 openCL 进行乳腺癌检测和计算密集型工作

Hamza Ouhakki, Abdelali Elmoufidi
{"title":"GPU 加速 mapreduce 的实现:使用 hadoop 和 openCL 进行乳腺癌检测和计算密集型工作","authors":"Hamza Ouhakki, Abdelali Elmoufidi","doi":"10.1007/s41870-024-02171-8","DOIUrl":null,"url":null,"abstract":"<p>Abstract-In the realm of distributed computing for large-scale data processing, MapReduce stands out for its efficiency. However, as tasks become increasingly compute-intensive, it faces challenges in single-node performance. In the context of breast cancer detection, particularly with image data, a new approach has emerged to enhance MapReduce through GPU acceleration. This implementation, executed using Hadoop and OpenCL, targets a general and cost-effective hardware platform, seamlessly integrating into Apache Hadoop. Tailored for a heterogeneous multi-machine and multicore architecture, this solution addresses the compute-intensive nature of big data applications in breast cancer image analysis. Remarkably, the implementation has achieved a significant nearly 13-fold improvement in performance, without the need for additional optimizations.</p>","PeriodicalId":14138,"journal":{"name":"International Journal of Information Technology","volume":"390 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An implementation of GPU accelerated mapreduce: using hadoop with openCL for breast cancer detection and compute-intensive jobs\",\"authors\":\"Hamza Ouhakki, Abdelali Elmoufidi\",\"doi\":\"10.1007/s41870-024-02171-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Abstract-In the realm of distributed computing for large-scale data processing, MapReduce stands out for its efficiency. However, as tasks become increasingly compute-intensive, it faces challenges in single-node performance. In the context of breast cancer detection, particularly with image data, a new approach has emerged to enhance MapReduce through GPU acceleration. This implementation, executed using Hadoop and OpenCL, targets a general and cost-effective hardware platform, seamlessly integrating into Apache Hadoop. Tailored for a heterogeneous multi-machine and multicore architecture, this solution addresses the compute-intensive nature of big data applications in breast cancer image analysis. Remarkably, the implementation has achieved a significant nearly 13-fold improvement in performance, without the need for additional optimizations.</p>\",\"PeriodicalId\":14138,\"journal\":{\"name\":\"International Journal of Information Technology\",\"volume\":\"390 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41870-024-02171-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-024-02171-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在大规模数据处理的分布式计算领域,MapReduce 以其高效性脱颖而出。然而,随着任务的计算密集度越来越高,它在单节点性能方面面临着挑战。在乳腺癌检测(尤其是图像数据)方面,出现了一种通过 GPU 加速来增强 MapReduce 的新方法。该实施方案使用 Hadoop 和 OpenCL 执行,以通用且经济高效的硬件平台为目标,可无缝集成到 Apache Hadoop 中。该解决方案专为异构多机和多核架构量身定制,可解决乳腺癌图像分析中大数据应用的计算密集型问题。值得注意的是,该实施方案的性能显著提高了近 13 倍,而且无需额外优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An implementation of GPU accelerated mapreduce: using hadoop with openCL for breast cancer detection and compute-intensive jobs

Abstract-In the realm of distributed computing for large-scale data processing, MapReduce stands out for its efficiency. However, as tasks become increasingly compute-intensive, it faces challenges in single-node performance. In the context of breast cancer detection, particularly with image data, a new approach has emerged to enhance MapReduce through GPU acceleration. This implementation, executed using Hadoop and OpenCL, targets a general and cost-effective hardware platform, seamlessly integrating into Apache Hadoop. Tailored for a heterogeneous multi-machine and multicore architecture, this solution addresses the compute-intensive nature of big data applications in breast cancer image analysis. Remarkably, the implementation has achieved a significant nearly 13-fold improvement in performance, without the need for additional optimizations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical cryptanalysis of seven classical lightweight ciphers CNN-BO-LSTM: an ensemble framework for prognosis of liver cancer Architecting lymphoma fusion: PROMETHEE-II guided optimization of combination therapeutic synergy RBCA-ETS: enhancing extractive text summarization with contextual embedding and word-level attention RAMD and transient analysis of a juice clarification unit in sugar plants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1