在 1.5 GPa 超高强度钢中实现高应变率下的优异延展性,且无明显的变形诱导塑性效应

IF 2.6 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Metals Pub Date : 2024-09-13 DOI:10.3390/met14091042
Yao Lu, Tianxing Ma, Zhiyuan Liang, Li Liu
{"title":"在 1.5 GPa 超高强度钢中实现高应变率下的优异延展性,且无明显的变形诱导塑性效应","authors":"Yao Lu, Tianxing Ma, Zhiyuan Liang, Li Liu","doi":"10.3390/met14091042","DOIUrl":null,"url":null,"abstract":"The development of ultrahigh-strength steels with good ductility is crucial for improving the crashworthiness of automobiles. In the present work, the mechanical responses and deformation behaviors of 1.5 GPa ultrahigh-strength steel were systematically investigated over a wide range of strain rates, from 10−3 s−1 to 103 s−1. The yield strength and tensile elongation at quasi-static strain rate (10−3 s−1) were 1548 MPa and 20%, respectively. The yield strength increased to 1930 MPa at an extremely high strain rate (103 s−1), and the steel maintained excellent ductility, with values as high as 17%. It was found that the prevailing of the transformation-induced plasticity (TRIP) effect at quasi-static condition resulted in the formation of fresh martensite. This produced strong hetero-deformation-induced (HDI) stress and strain partitioning, contributing to the enhancement of strain hardening. The TRIP effect is remarkably suppressed under high strain rates, and thus the retained austenite with excellent deformation ability sustains the subsequent deformation, leading to superior ductility when the TRIP effect and HDI strengthening are retarded. Ultrahigh-strength steel with great strength–ductility combination over a wide range of strain rates has great potential in improving component performance while reducing vehicle weight.","PeriodicalId":18461,"journal":{"name":"Metals","volume":"56 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving Superior Ductility at High Strain Rate in a 1.5 GPa Ultrahigh-Strength Steel without Obvious Transformation-Induced Plasticity Effect\",\"authors\":\"Yao Lu, Tianxing Ma, Zhiyuan Liang, Li Liu\",\"doi\":\"10.3390/met14091042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of ultrahigh-strength steels with good ductility is crucial for improving the crashworthiness of automobiles. In the present work, the mechanical responses and deformation behaviors of 1.5 GPa ultrahigh-strength steel were systematically investigated over a wide range of strain rates, from 10−3 s−1 to 103 s−1. The yield strength and tensile elongation at quasi-static strain rate (10−3 s−1) were 1548 MPa and 20%, respectively. The yield strength increased to 1930 MPa at an extremely high strain rate (103 s−1), and the steel maintained excellent ductility, with values as high as 17%. It was found that the prevailing of the transformation-induced plasticity (TRIP) effect at quasi-static condition resulted in the formation of fresh martensite. This produced strong hetero-deformation-induced (HDI) stress and strain partitioning, contributing to the enhancement of strain hardening. The TRIP effect is remarkably suppressed under high strain rates, and thus the retained austenite with excellent deformation ability sustains the subsequent deformation, leading to superior ductility when the TRIP effect and HDI strengthening are retarded. Ultrahigh-strength steel with great strength–ductility combination over a wide range of strain rates has great potential in improving component performance while reducing vehicle weight.\",\"PeriodicalId\":18461,\"journal\":{\"name\":\"Metals\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/met14091042\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/met14091042","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发具有良好延展性的超高强度钢对于提高汽车的耐撞性至关重要。在本研究中,系统地研究了 1.5 GPa 超高强度钢在 10-3 s-1 至 103 s-1 范围内的机械响应和变形行为。准静态应变速率(10-3 s-1)下的屈服强度和拉伸伸长率分别为 1548 兆帕和 20%。在极高应变率(103 s-1)下,屈服强度增至 1930 兆帕,钢材保持了极佳的延展性,延展值高达 17%。研究发现,在准静态条件下,转变诱导塑性(TRIP)效应的盛行导致新鲜马氏体的形成。这产生了强烈的异变形诱导(HDI)应力和应变分配,有助于增强应变硬化。在高应变速率下,TRIP 效应明显受到抑制,因此具有出色变形能力的残留奥氏体可维持后续变形,从而在 TRIP 效应和 HDI 强化被延缓的情况下获得出色的延展性。在广泛的应变速率范围内,超高强度钢具有极佳的强度-韧性组合,在提高部件性能的同时减轻汽车重量方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Achieving Superior Ductility at High Strain Rate in a 1.5 GPa Ultrahigh-Strength Steel without Obvious Transformation-Induced Plasticity Effect
The development of ultrahigh-strength steels with good ductility is crucial for improving the crashworthiness of automobiles. In the present work, the mechanical responses and deformation behaviors of 1.5 GPa ultrahigh-strength steel were systematically investigated over a wide range of strain rates, from 10−3 s−1 to 103 s−1. The yield strength and tensile elongation at quasi-static strain rate (10−3 s−1) were 1548 MPa and 20%, respectively. The yield strength increased to 1930 MPa at an extremely high strain rate (103 s−1), and the steel maintained excellent ductility, with values as high as 17%. It was found that the prevailing of the transformation-induced plasticity (TRIP) effect at quasi-static condition resulted in the formation of fresh martensite. This produced strong hetero-deformation-induced (HDI) stress and strain partitioning, contributing to the enhancement of strain hardening. The TRIP effect is remarkably suppressed under high strain rates, and thus the retained austenite with excellent deformation ability sustains the subsequent deformation, leading to superior ductility when the TRIP effect and HDI strengthening are retarded. Ultrahigh-strength steel with great strength–ductility combination over a wide range of strain rates has great potential in improving component performance while reducing vehicle weight.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metals
Metals MATERIALS SCIENCE, MULTIDISCIPLINARY-METALLURGY & METALLURGICAL ENGINEERING
CiteScore
4.90
自引率
13.80%
发文量
1832
审稿时长
1.5 months
期刊介绍: Metals (ISSN 2075-4701) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Metals provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of metals.
期刊最新文献
Improvement of High Temperature Wear Resistance of Laser-Cladding High-Entropy Alloy Coatings: A Review New Method to Recover Activation Energy: Application to Copper Oxidation Alternatives to Reduce Hot Cracking Susceptibility of IN718 Casting Alloy Laser Beam Welds with a Mushroom Shape A Method of Images to Study Plate-Impact-Induced Cavitation in Aluminum through Molecular Dynamics Simulation Morphological Characteristics of W/Cu Composite Nanoparticles with Complex Phase Structure Synthesized via Reactive Radio Frequency (RF) Thermal Plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1