{"title":"超快加热对 2.2 GPa 级热成型钢微观结构和力学性能的影响","authors":"Mai Wang, Jiang Chang, Hongyi Wu, Zhenli Mi, Yanxin Wu, Qi Zhang","doi":"10.3390/met14091006","DOIUrl":null,"url":null,"abstract":"The aim of the present work is to evaluate the effect of ultrafast heating on the microstructure and mechanical properties of hot forming steel. The initial microstructure utilized in this study was a cold-rolled microstructure, and the test steel was heated to full austenitization at a rate of 200 °C/s, followed by water quenching. It was observed that the ultrafast heating process significantly refines both the prior austenite grains and martensite laths while inheriting high-density dislocations from the initial cold-rolled microstructure. Consequently, the coupling mechanism between dislocation strengthening and grain refinement strengthening remarkably enhanced both the yield strength and ultimate tensile strength of the test steel. Eventually, the yield strength of the hot forming steel reached 1524 MPa, along with an ultimate tensile strength of 2221 MPa and uniform elongation of 5.2%.","PeriodicalId":18461,"journal":{"name":"Metals","volume":"32 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Ultrafast Heating on the Microstructure and Mechanical Properties of the 2.2 GPa Grade Hot Forming Steel\",\"authors\":\"Mai Wang, Jiang Chang, Hongyi Wu, Zhenli Mi, Yanxin Wu, Qi Zhang\",\"doi\":\"10.3390/met14091006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the present work is to evaluate the effect of ultrafast heating on the microstructure and mechanical properties of hot forming steel. The initial microstructure utilized in this study was a cold-rolled microstructure, and the test steel was heated to full austenitization at a rate of 200 °C/s, followed by water quenching. It was observed that the ultrafast heating process significantly refines both the prior austenite grains and martensite laths while inheriting high-density dislocations from the initial cold-rolled microstructure. Consequently, the coupling mechanism between dislocation strengthening and grain refinement strengthening remarkably enhanced both the yield strength and ultimate tensile strength of the test steel. Eventually, the yield strength of the hot forming steel reached 1524 MPa, along with an ultimate tensile strength of 2221 MPa and uniform elongation of 5.2%.\",\"PeriodicalId\":18461,\"journal\":{\"name\":\"Metals\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/met14091006\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/met14091006","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The Effect of Ultrafast Heating on the Microstructure and Mechanical Properties of the 2.2 GPa Grade Hot Forming Steel
The aim of the present work is to evaluate the effect of ultrafast heating on the microstructure and mechanical properties of hot forming steel. The initial microstructure utilized in this study was a cold-rolled microstructure, and the test steel was heated to full austenitization at a rate of 200 °C/s, followed by water quenching. It was observed that the ultrafast heating process significantly refines both the prior austenite grains and martensite laths while inheriting high-density dislocations from the initial cold-rolled microstructure. Consequently, the coupling mechanism between dislocation strengthening and grain refinement strengthening remarkably enhanced both the yield strength and ultimate tensile strength of the test steel. Eventually, the yield strength of the hot forming steel reached 1524 MPa, along with an ultimate tensile strength of 2221 MPa and uniform elongation of 5.2%.
期刊介绍:
Metals (ISSN 2075-4701) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Metals provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of metals.