Alaeddine Ahmed Azi, Djamel Saigaa, Mahmoud Drif, Abdelouadoud Loukriz, Ahmed Bendib, Moadh Kichene
{"title":"ISIS-proteus 中针对动态和非均匀气候条件的改进型光伏组件模型","authors":"Alaeddine Ahmed Azi, Djamel Saigaa, Mahmoud Drif, Abdelouadoud Loukriz, Ahmed Bendib, Moadh Kichene","doi":"10.1007/s00202-024-02639-7","DOIUrl":null,"url":null,"abstract":"<p>Modeling and simulating photovoltaic (PV) cells or modules involve using mathematical and computational models to predict their behavior and performance under various conditions. This can include modeling the electrical characteristics of solar cells, as well as the interactions between multiple cells in a PV module. In ISIS-Proteus software, the existing research works have modeled the PV modules either by using a Proteus Spice model of the PV panel without including the effect of climatic conditions variation or by using pure mathematical relations that describe all physical and environmental parameters that lead to a static behavior. Therefore, this paper proposes a new improved ISIS-Proteus model of a PV cell/module for dynamic performance emulation under varying climatic conditions. The proposed model is designed based on the equivalent circuit of a five-parameter single-diode as an electrical part controlled by a numerical part that includes the mathematical expressions corresponding to each parameter. The designed model can capture the impact of solar irradiance and temperature on PV outputs, thereby enhancing real-world PV performance prediction. Also, it can effectively simulate the effect of the partial shading. To validate the accuracy of the proposed model, a comparative study is conducted evaluating the model's performance against PVsyst software models and real-world data brought from a large-scale grid-connected PV station in Ain El-Melh, Algeria. In this study, the simulation tests are carried out using ISIS-Proteus considering several PV module types and under various operating conditions, including uniform test conditions (UTCs) and partial shading conditions (PSCs). The findings, including I–V and P–V curves and several standard metrics, prove the proposed model's effectiveness in accurately predicting the behavior of PV modules under both UTCs and PSCs, aligning closely with real-world performance.</p>","PeriodicalId":50546,"journal":{"name":"Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved PV module model for dynamic and nonuniform climatic conditions in ISIS-proteus\",\"authors\":\"Alaeddine Ahmed Azi, Djamel Saigaa, Mahmoud Drif, Abdelouadoud Loukriz, Ahmed Bendib, Moadh Kichene\",\"doi\":\"10.1007/s00202-024-02639-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Modeling and simulating photovoltaic (PV) cells or modules involve using mathematical and computational models to predict their behavior and performance under various conditions. This can include modeling the electrical characteristics of solar cells, as well as the interactions between multiple cells in a PV module. In ISIS-Proteus software, the existing research works have modeled the PV modules either by using a Proteus Spice model of the PV panel without including the effect of climatic conditions variation or by using pure mathematical relations that describe all physical and environmental parameters that lead to a static behavior. Therefore, this paper proposes a new improved ISIS-Proteus model of a PV cell/module for dynamic performance emulation under varying climatic conditions. The proposed model is designed based on the equivalent circuit of a five-parameter single-diode as an electrical part controlled by a numerical part that includes the mathematical expressions corresponding to each parameter. The designed model can capture the impact of solar irradiance and temperature on PV outputs, thereby enhancing real-world PV performance prediction. Also, it can effectively simulate the effect of the partial shading. To validate the accuracy of the proposed model, a comparative study is conducted evaluating the model's performance against PVsyst software models and real-world data brought from a large-scale grid-connected PV station in Ain El-Melh, Algeria. In this study, the simulation tests are carried out using ISIS-Proteus considering several PV module types and under various operating conditions, including uniform test conditions (UTCs) and partial shading conditions (PSCs). The findings, including I–V and P–V curves and several standard metrics, prove the proposed model's effectiveness in accurately predicting the behavior of PV modules under both UTCs and PSCs, aligning closely with real-world performance.</p>\",\"PeriodicalId\":50546,\"journal\":{\"name\":\"Electrical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00202-024-02639-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00202-024-02639-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Improved PV module model for dynamic and nonuniform climatic conditions in ISIS-proteus
Modeling and simulating photovoltaic (PV) cells or modules involve using mathematical and computational models to predict their behavior and performance under various conditions. This can include modeling the electrical characteristics of solar cells, as well as the interactions between multiple cells in a PV module. In ISIS-Proteus software, the existing research works have modeled the PV modules either by using a Proteus Spice model of the PV panel without including the effect of climatic conditions variation or by using pure mathematical relations that describe all physical and environmental parameters that lead to a static behavior. Therefore, this paper proposes a new improved ISIS-Proteus model of a PV cell/module for dynamic performance emulation under varying climatic conditions. The proposed model is designed based on the equivalent circuit of a five-parameter single-diode as an electrical part controlled by a numerical part that includes the mathematical expressions corresponding to each parameter. The designed model can capture the impact of solar irradiance and temperature on PV outputs, thereby enhancing real-world PV performance prediction. Also, it can effectively simulate the effect of the partial shading. To validate the accuracy of the proposed model, a comparative study is conducted evaluating the model's performance against PVsyst software models and real-world data brought from a large-scale grid-connected PV station in Ain El-Melh, Algeria. In this study, the simulation tests are carried out using ISIS-Proteus considering several PV module types and under various operating conditions, including uniform test conditions (UTCs) and partial shading conditions (PSCs). The findings, including I–V and P–V curves and several standard metrics, prove the proposed model's effectiveness in accurately predicting the behavior of PV modules under both UTCs and PSCs, aligning closely with real-world performance.
期刊介绍:
The journal “Electrical Engineering” following the long tradition of Archiv für Elektrotechnik publishes original papers of archival value in electrical engineering with a strong focus on electric power systems, smart grid approaches to power transmission and distribution, power system planning, operation and control, electricity markets, renewable power generation, microgrids, power electronics, electrical machines and drives, electric vehicles, railway electrification systems and electric transportation infrastructures, energy storage in electric power systems and vehicles, high voltage engineering, electromagnetic transients in power networks, lightning protection, electrical safety, electrical insulation systems, apparatus, devices, and components. Manuscripts describing theoretical, computer application and experimental research results are welcomed.
Electrical Engineering - Archiv für Elektrotechnik is published in agreement with Verband der Elektrotechnik Elektronik Informationstechnik eV (VDE).