镍粉的生产技术及物理和技术特性(综述)

IF 0.9 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Powder Metallurgy and Metal Ceramics Pub Date : 2024-08-17 DOI:10.1007/s11106-024-00423-7
O. S. Makarenko, O. I. Hetman
{"title":"镍粉的生产技术及物理和技术特性(综述)","authors":"O. S. Makarenko,&nbsp;O. I. Hetman","doi":"10.1007/s11106-024-00423-7","DOIUrl":null,"url":null,"abstract":"<p>The paper presents a comprehensive analysis of leading trends in nickel powder production techniques. The physical and technological properties of nickel powders are systematized according to chemical composition, average size and morphology of particles and their agglomerates, specific surface area, and apparent density. These data will be useful to potential consumers for the optimal design of functional properties of nickel powder products. The review compares industrial and modern techniques, focusing on their key advantages and disadvantages. The development of new process methods and techniques, such as reduction of nickel oxides with hydrogen in fluidized bed reactors and rotary furnaces, is demonstrated. Various methods for synthesizing nanosized nickel powders for special applications, being at the laboratory research stage, are considered. These methods include deposition and thermal decomposition from solutions using various precursors, synthesis under microwave radiation, laser ablation, plasma chemical synthesis, green synthesis, etc. The properties of powders produced by the reduction of nickel precursors with hydrazine, alkali metal borohydrides, polyols, urotropine, polystyrene, etc. are analyzed. Environmetal and human health concerns related to nickel powder production methods are briefly discussed. Carbonyl, electrolytic, and hydrometallurgical methods allow the production of nickel powders in large quantities but involve high energy consumption and production toxicity. Wet chemistry methods for producing nanosized nickel powders use various toxic chemical reagents, potentially causing environmental issues when implemented industrially. Hydrogen reduction of nickel oxide, as an environmentally friendly method, offers unconditional advantages, including reduced greenhouse gas emissions and zero solvent waste.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 11-12","pages":"633 - 666"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Production Techniques and Physical and Technological Properties of Nickel Powders (Review)\",\"authors\":\"O. S. Makarenko,&nbsp;O. I. Hetman\",\"doi\":\"10.1007/s11106-024-00423-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper presents a comprehensive analysis of leading trends in nickel powder production techniques. The physical and technological properties of nickel powders are systematized according to chemical composition, average size and morphology of particles and their agglomerates, specific surface area, and apparent density. These data will be useful to potential consumers for the optimal design of functional properties of nickel powder products. The review compares industrial and modern techniques, focusing on their key advantages and disadvantages. The development of new process methods and techniques, such as reduction of nickel oxides with hydrogen in fluidized bed reactors and rotary furnaces, is demonstrated. Various methods for synthesizing nanosized nickel powders for special applications, being at the laboratory research stage, are considered. These methods include deposition and thermal decomposition from solutions using various precursors, synthesis under microwave radiation, laser ablation, plasma chemical synthesis, green synthesis, etc. The properties of powders produced by the reduction of nickel precursors with hydrazine, alkali metal borohydrides, polyols, urotropine, polystyrene, etc. are analyzed. Environmetal and human health concerns related to nickel powder production methods are briefly discussed. Carbonyl, electrolytic, and hydrometallurgical methods allow the production of nickel powders in large quantities but involve high energy consumption and production toxicity. Wet chemistry methods for producing nanosized nickel powders use various toxic chemical reagents, potentially causing environmental issues when implemented industrially. Hydrogen reduction of nickel oxide, as an environmentally friendly method, offers unconditional advantages, including reduced greenhouse gas emissions and zero solvent waste.</p>\",\"PeriodicalId\":742,\"journal\":{\"name\":\"Powder Metallurgy and Metal Ceramics\",\"volume\":\"62 11-12\",\"pages\":\"633 - 666\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Metallurgy and Metal Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11106-024-00423-7\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy and Metal Ceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11106-024-00423-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文全面分析了镍粉生产技术的主要趋势。根据化学成分、颗粒及其团聚体的平均尺寸和形态、比表面积和表观密度,对镍粉的物理和技术特性进行了系统分析。这些数据将有助于潜在消费者优化设计镍粉产品的功能特性。综述对工业技术和现代技术进行了比较,重点介绍了它们的主要优缺点。介绍了新工艺方法和技术的发展,如在流化床反应器和回转炉中用氢气还原镍氧化物。此外,还介绍了实验室研究阶段合成特殊用途纳米镍粉的各种方法。这些方法包括使用各种前体从溶液中沉积和热分解、在微波辐射下合成、激光烧蚀、等离子化学合成、绿色合成等。此外,还分析了镍前驱体与联氨、碱金属硼氢化物、多元醇、乌洛托品、聚苯乙烯等还原产生的粉末的特性。简要讨论了与镍粉生产方法有关的环境金属和人类健康问题。羰基法、电解法和湿法冶金法可以大量生产镍粉,但能耗高、生产毒性大。生产纳米级镍粉的湿化学方法使用各种有毒化学试剂,在工业化生产中可能会造成环境问题。氢还原氧化镍作为一种环境友好型方法,具有无条件的优势,包括减少温室气体排放和零溶剂浪费。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Production Techniques and Physical and Technological Properties of Nickel Powders (Review)

The paper presents a comprehensive analysis of leading trends in nickel powder production techniques. The physical and technological properties of nickel powders are systematized according to chemical composition, average size and morphology of particles and their agglomerates, specific surface area, and apparent density. These data will be useful to potential consumers for the optimal design of functional properties of nickel powder products. The review compares industrial and modern techniques, focusing on their key advantages and disadvantages. The development of new process methods and techniques, such as reduction of nickel oxides with hydrogen in fluidized bed reactors and rotary furnaces, is demonstrated. Various methods for synthesizing nanosized nickel powders for special applications, being at the laboratory research stage, are considered. These methods include deposition and thermal decomposition from solutions using various precursors, synthesis under microwave radiation, laser ablation, plasma chemical synthesis, green synthesis, etc. The properties of powders produced by the reduction of nickel precursors with hydrazine, alkali metal borohydrides, polyols, urotropine, polystyrene, etc. are analyzed. Environmetal and human health concerns related to nickel powder production methods are briefly discussed. Carbonyl, electrolytic, and hydrometallurgical methods allow the production of nickel powders in large quantities but involve high energy consumption and production toxicity. Wet chemistry methods for producing nanosized nickel powders use various toxic chemical reagents, potentially causing environmental issues when implemented industrially. Hydrogen reduction of nickel oxide, as an environmentally friendly method, offers unconditional advantages, including reduced greenhouse gas emissions and zero solvent waste.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Powder Metallurgy and Metal Ceramics
Powder Metallurgy and Metal Ceramics 工程技术-材料科学:硅酸盐
CiteScore
1.90
自引率
20.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: Powder Metallurgy and Metal Ceramics covers topics of the theory, manufacturing technology, and properties of powder; technology of forming processes; the technology of sintering, heat treatment, and thermo-chemical treatment; properties of sintered materials; and testing methods.
期刊最新文献
Properties of Powders Produced by Plasma-Arc Spheroidization of Current-Carrying Fe–Al Flux-Cored Wire Tribotechnical Properties of Copper-Based Antifriction Composites for High-Speed Friction Units of Printing Machines Influence of f–d Interaction on Tunnel Magnetoresistance and Magnetoimpedance in Island Fe/Gd2O3 Nanostructures Experimental Studies on the Effect of Destructive Reagents on Metal Structural Elements Structural Creep Sensitivity of ARB-Processed Al/SiC/Cu Bimetallic Composite Strip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1