Theodosios Theodosiou, Konstantinos Vrettos, Ismini Baltsavia, Fotis Baltoumas, Nikolas Papanikolaou, Andreas Ν. Antonakis, Dimitrios Mossialos, Christos A. Ouzounis, Vasilis J. Promponas, Makrina Karaglani, Ekaterini Chatzaki, Sven Brandau, Georgios A. Pavlopoulos, Evangelos Andreakos, Ioannis Iliopoulos
{"title":"BioTextQuest v2.0:生物医学文献挖掘和概念发现的进化工具","authors":"Theodosios Theodosiou, Konstantinos Vrettos, Ismini Baltsavia, Fotis Baltoumas, Nikolas Papanikolaou, Andreas Ν. Antonakis, Dimitrios Mossialos, Christos A. Ouzounis, Vasilis J. Promponas, Makrina Karaglani, Ekaterini Chatzaki, Sven Brandau, Georgios A. Pavlopoulos, Evangelos Andreakos, Ioannis Iliopoulos","doi":"10.1016/j.csbj.2024.08.016","DOIUrl":null,"url":null,"abstract":"The process of navigating through the landscape of biomedical literature and performing searches or combining them with bioinformatics analyses can be daunting, considering the exponential growth of scientific corpora and the plethora of tools designed to mine PubMed(®) and related repositories. Herein, we present BioTextQuest v2.0, a tool for biomedical literature mining. BioTextQuest v2.0 is an open-source online web portal for document clustering based on sets of selected biomedical terms, offering efficient management of information derived from PubMed abstracts. Employing established machine learning algorithms, the tool facilitates document clustering while allowing users to customize the analysis by selecting terms of interest. BioTextQuest v2.0 streamlines the process of uncovering valuable insights from biomedical research articles, serving as an agent that connects the identification of key terms like genes/proteins, diseases, chemicals, Gene Ontology (GO) terms, functions, and others through named entity recognition, and their application in biological research. Instead of manually sifting through articles, researchers can enter their PubMed-like query and receive extracted information in two user-friendly formats, tables and word clouds, simplifying the comprehension of key findings. The latest update of BioTextQuest leverages the EXTRACT named entity recognition tagger, enhancing its ability to pinpoint various biological entities within text. BioTextQuest v2.0 acts as a research assistant, significantly reducing the time and effort required for researchers to identify and present relevant information from the biomedical literature.","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BioTextQuest v2.0: An evolved tool for biomedical literature mining and concept discovery\",\"authors\":\"Theodosios Theodosiou, Konstantinos Vrettos, Ismini Baltsavia, Fotis Baltoumas, Nikolas Papanikolaou, Andreas Ν. Antonakis, Dimitrios Mossialos, Christos A. Ouzounis, Vasilis J. Promponas, Makrina Karaglani, Ekaterini Chatzaki, Sven Brandau, Georgios A. Pavlopoulos, Evangelos Andreakos, Ioannis Iliopoulos\",\"doi\":\"10.1016/j.csbj.2024.08.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The process of navigating through the landscape of biomedical literature and performing searches or combining them with bioinformatics analyses can be daunting, considering the exponential growth of scientific corpora and the plethora of tools designed to mine PubMed(®) and related repositories. Herein, we present BioTextQuest v2.0, a tool for biomedical literature mining. BioTextQuest v2.0 is an open-source online web portal for document clustering based on sets of selected biomedical terms, offering efficient management of information derived from PubMed abstracts. Employing established machine learning algorithms, the tool facilitates document clustering while allowing users to customize the analysis by selecting terms of interest. BioTextQuest v2.0 streamlines the process of uncovering valuable insights from biomedical research articles, serving as an agent that connects the identification of key terms like genes/proteins, diseases, chemicals, Gene Ontology (GO) terms, functions, and others through named entity recognition, and their application in biological research. Instead of manually sifting through articles, researchers can enter their PubMed-like query and receive extracted information in two user-friendly formats, tables and word clouds, simplifying the comprehension of key findings. The latest update of BioTextQuest leverages the EXTRACT named entity recognition tagger, enhancing its ability to pinpoint various biological entities within text. BioTextQuest v2.0 acts as a research assistant, significantly reducing the time and effort required for researchers to identify and present relevant information from the biomedical literature.\",\"PeriodicalId\":10715,\"journal\":{\"name\":\"Computational and structural biotechnology journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and structural biotechnology journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.csbj.2024.08.016\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2024.08.016","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
BioTextQuest v2.0: An evolved tool for biomedical literature mining and concept discovery
The process of navigating through the landscape of biomedical literature and performing searches or combining them with bioinformatics analyses can be daunting, considering the exponential growth of scientific corpora and the plethora of tools designed to mine PubMed(®) and related repositories. Herein, we present BioTextQuest v2.0, a tool for biomedical literature mining. BioTextQuest v2.0 is an open-source online web portal for document clustering based on sets of selected biomedical terms, offering efficient management of information derived from PubMed abstracts. Employing established machine learning algorithms, the tool facilitates document clustering while allowing users to customize the analysis by selecting terms of interest. BioTextQuest v2.0 streamlines the process of uncovering valuable insights from biomedical research articles, serving as an agent that connects the identification of key terms like genes/proteins, diseases, chemicals, Gene Ontology (GO) terms, functions, and others through named entity recognition, and their application in biological research. Instead of manually sifting through articles, researchers can enter their PubMed-like query and receive extracted information in two user-friendly formats, tables and word clouds, simplifying the comprehension of key findings. The latest update of BioTextQuest leverages the EXTRACT named entity recognition tagger, enhancing its ability to pinpoint various biological entities within text. BioTextQuest v2.0 acts as a research assistant, significantly reducing the time and effort required for researchers to identify and present relevant information from the biomedical literature.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology