{"title":"基于多信息聚合的节点分类图残差生成网络","authors":"Zhenhuan Liang, Xiaofen Jia, Xiaolei Han, Baiting Zhao, Zhu Feng","doi":"10.1007/s10791-024-09461-6","DOIUrl":null,"url":null,"abstract":"<p>The key to improving the performance of graph convolutional networks (GCN) is to fully explore the correlation between neighboring and distant information. Aiming at the over-smoothing problem of GCN, in order to make full use of the relationship among features, graphs and labels, a graph residual generation network based on multi-information aggregation (MIA-GRGN) is proposed. Firstly, aiming at the defects of GCN, we design a deep initial residual graph convolution network (DIRGCN), which connects the initial input through residuals, so that each layer node retains part of the information of the initial features, ensuring the localization of the graph structure and effectively alleviating the problem of over-smoothing. Secondly, we propose a random graph generation method (RGGM) by utilizing graph edge sampling and negative edge sampling, and optimize the supervision loss function of DIRGCN in the form of generation framework. Finally, applying RGGM and DIRGCN as inference modules for modeling hypotheses and obtaining approximate posterior distributions of unknown labels, an optimized loss function is obtained, we construct a multi-information aggregation MIA-GRGN that combines graph structure, node characteristics and label joint distribution. Experiments on benchmark graph classification datasets show that MIA-GRGN achieves better classification results compared with the benchmark models and mainstream models, especially for datasets with less dense edge relationships between nodes.</p>","PeriodicalId":54352,"journal":{"name":"Information Retrieval Journal","volume":"12 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A graph residual generation network for node classification based on multi-information aggregation\",\"authors\":\"Zhenhuan Liang, Xiaofen Jia, Xiaolei Han, Baiting Zhao, Zhu Feng\",\"doi\":\"10.1007/s10791-024-09461-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The key to improving the performance of graph convolutional networks (GCN) is to fully explore the correlation between neighboring and distant information. Aiming at the over-smoothing problem of GCN, in order to make full use of the relationship among features, graphs and labels, a graph residual generation network based on multi-information aggregation (MIA-GRGN) is proposed. Firstly, aiming at the defects of GCN, we design a deep initial residual graph convolution network (DIRGCN), which connects the initial input through residuals, so that each layer node retains part of the information of the initial features, ensuring the localization of the graph structure and effectively alleviating the problem of over-smoothing. Secondly, we propose a random graph generation method (RGGM) by utilizing graph edge sampling and negative edge sampling, and optimize the supervision loss function of DIRGCN in the form of generation framework. Finally, applying RGGM and DIRGCN as inference modules for modeling hypotheses and obtaining approximate posterior distributions of unknown labels, an optimized loss function is obtained, we construct a multi-information aggregation MIA-GRGN that combines graph structure, node characteristics and label joint distribution. Experiments on benchmark graph classification datasets show that MIA-GRGN achieves better classification results compared with the benchmark models and mainstream models, especially for datasets with less dense edge relationships between nodes.</p>\",\"PeriodicalId\":54352,\"journal\":{\"name\":\"Information Retrieval Journal\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Retrieval Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10791-024-09461-6\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Retrieval Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10791-024-09461-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A graph residual generation network for node classification based on multi-information aggregation
The key to improving the performance of graph convolutional networks (GCN) is to fully explore the correlation between neighboring and distant information. Aiming at the over-smoothing problem of GCN, in order to make full use of the relationship among features, graphs and labels, a graph residual generation network based on multi-information aggregation (MIA-GRGN) is proposed. Firstly, aiming at the defects of GCN, we design a deep initial residual graph convolution network (DIRGCN), which connects the initial input through residuals, so that each layer node retains part of the information of the initial features, ensuring the localization of the graph structure and effectively alleviating the problem of over-smoothing. Secondly, we propose a random graph generation method (RGGM) by utilizing graph edge sampling and negative edge sampling, and optimize the supervision loss function of DIRGCN in the form of generation framework. Finally, applying RGGM and DIRGCN as inference modules for modeling hypotheses and obtaining approximate posterior distributions of unknown labels, an optimized loss function is obtained, we construct a multi-information aggregation MIA-GRGN that combines graph structure, node characteristics and label joint distribution. Experiments on benchmark graph classification datasets show that MIA-GRGN achieves better classification results compared with the benchmark models and mainstream models, especially for datasets with less dense edge relationships between nodes.
期刊介绍:
The journal provides an international forum for the publication of theory, algorithms, analysis and experiments across the broad area of information retrieval. Topics of interest include search, indexing, analysis, and evaluation for applications such as the web, social and streaming media, recommender systems, and text archives. This includes research on human factors in search, bridging artificial intelligence and information retrieval, and domain-specific search applications.