用于具有对数损失的 SVC 双级超参数优化的快速平滑牛顿法

IF 1.6 3区 数学 Q2 MATHEMATICS, APPLIED Optimization Pub Date : 2024-08-30 DOI:10.1080/02331934.2024.2394612
Yixin Wang, Qingna Li
{"title":"用于具有对数损失的 SVC 双级超参数优化的快速平滑牛顿法","authors":"Yixin Wang, Qingna Li","doi":"10.1080/02331934.2024.2394612","DOIUrl":null,"url":null,"abstract":"Support vector classification (SVC) with logistic loss has excellent theoretical properties in classification problems where the label values are not continuous. In this paper, we reformulate the h...","PeriodicalId":54671,"journal":{"name":"Optimization","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fast smoothing newton method for bilevel hyperparameter optimization for SVC with logistic loss\",\"authors\":\"Yixin Wang, Qingna Li\",\"doi\":\"10.1080/02331934.2024.2394612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Support vector classification (SVC) with logistic loss has excellent theoretical properties in classification problems where the label values are not continuous. In this paper, we reformulate the h...\",\"PeriodicalId\":54671,\"journal\":{\"name\":\"Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/02331934.2024.2394612\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02331934.2024.2394612","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在标签值不连续的分类问题中,带有逻辑损失的支持向量分类(SVC)具有出色的理论特性。在本文中,我们重新阐述了支持向量分类的逻辑损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A fast smoothing newton method for bilevel hyperparameter optimization for SVC with logistic loss
Support vector classification (SVC) with logistic loss has excellent theoretical properties in classification problems where the label values are not continuous. In this paper, we reformulate the h...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optimization
Optimization 数学-应用数学
CiteScore
4.50
自引率
9.10%
发文量
146
审稿时长
4.5 months
期刊介绍: Optimization publishes refereed, theoretical and applied papers on the latest developments in fields such as linear, nonlinear, stochastic, parametric, discrete and dynamic programming, control theory and game theory. A special section is devoted to review papers on theory and methods in interesting areas of mathematical programming and optimization techniques. The journal also publishes conference proceedings, book reviews and announcements. All published research articles in this journal have undergone rigorous peer review, based on initial editor screening and anonymous refereeing by independent expert referees.
期刊最新文献
Fixed points of regular set-valued mappings in quasi-metric spaces Equivalent conditions of null controllability for controlled stochastic relaxed system Hyperrectangular partition schemes for two-stage stochastic linear mixed integer programming problems Large-step algorithm for linear complementarity problem with new search direction The horizontal tensor complementarity problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1