图灵不稳定性和模式形成中的网络拓扑和双重延迟

IF 2 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL Journal of Physics A: Mathematical and Theoretical Pub Date : 2024-09-10 DOI:10.1088/1751-8121/ad75d7
Q Q Zheng, X Li, J W Shen, V Pandey and L N Guan
{"title":"图灵不稳定性和模式形成中的网络拓扑和双重延迟","authors":"Q Q Zheng, X Li, J W Shen, V Pandey and L N Guan","doi":"10.1088/1751-8121/ad75d7","DOIUrl":null,"url":null,"abstract":"Investigating Turing patterns in complex networks presents a significant challenge, particularly in understanding the transition from simple to complex systems. We examine the network-organized SIR model, incorporating the Matthew effect and double delays, to demonstrate how network structures directly impact critical delay values, providing insights into historical patterns of disease spread. The study reveals that both susceptible and infected individuals experience a latent period due to interactions between the Matthew effect and incubation, mirroring historical patterns observed in seasonal flu outbreaks. The emergence of chaotic states is observed when two delays intersect critical curves, highlighting the complex dynamics that can arise in historical epidemic models. A novel approach is introduced, utilizing eigenvalue ratios from minimum/maximum Laplacian matrices (excluding 0) and critical delay values, to identify stable regions within network-organized systems, providing a new tool for historical epidemiological analysis. The paper further explores dynamic and biological mechanisms, discussing how these findings can inform historical and contemporary strategies for managing infectious disease outbreaks.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"32 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network topology and double delays in turing instability and pattern formation\",\"authors\":\"Q Q Zheng, X Li, J W Shen, V Pandey and L N Guan\",\"doi\":\"10.1088/1751-8121/ad75d7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Investigating Turing patterns in complex networks presents a significant challenge, particularly in understanding the transition from simple to complex systems. We examine the network-organized SIR model, incorporating the Matthew effect and double delays, to demonstrate how network structures directly impact critical delay values, providing insights into historical patterns of disease spread. The study reveals that both susceptible and infected individuals experience a latent period due to interactions between the Matthew effect and incubation, mirroring historical patterns observed in seasonal flu outbreaks. The emergence of chaotic states is observed when two delays intersect critical curves, highlighting the complex dynamics that can arise in historical epidemic models. A novel approach is introduced, utilizing eigenvalue ratios from minimum/maximum Laplacian matrices (excluding 0) and critical delay values, to identify stable regions within network-organized systems, providing a new tool for historical epidemiological analysis. The paper further explores dynamic and biological mechanisms, discussing how these findings can inform historical and contemporary strategies for managing infectious disease outbreaks.\",\"PeriodicalId\":16763,\"journal\":{\"name\":\"Journal of Physics A: Mathematical and Theoretical\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A: Mathematical and Theoretical\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad75d7\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad75d7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究复杂网络中的图灵模式是一项重大挑战,尤其是在理解从简单系统到复杂系统的过渡方面。我们研究了包含马修效应和双重延迟的网络组织 SIR 模型,以展示网络结构如何直接影响临界延迟值,从而深入了解疾病传播的历史模式。研究发现,由于马太效应和潜伏期之间的相互作用,易感个体和感染个体都会经历一段潜伏期,这与在季节性流感爆发中观察到的历史模式如出一辙。当两个延迟与临界曲线相交时,就会出现混沌状态,这凸显了历史流行病模型中可能出现的复杂动态。本文引入了一种新方法,利用最小/最大拉普拉奇矩阵(不包括 0)的特征值比和临界延迟值来识别网络组织系统中的稳定区域,为历史流行病学分析提供了一种新工具。论文进一步探讨了动态和生物机制,讨论了这些发现如何为管理传染病爆发的历史和当代战略提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Network topology and double delays in turing instability and pattern formation
Investigating Turing patterns in complex networks presents a significant challenge, particularly in understanding the transition from simple to complex systems. We examine the network-organized SIR model, incorporating the Matthew effect and double delays, to demonstrate how network structures directly impact critical delay values, providing insights into historical patterns of disease spread. The study reveals that both susceptible and infected individuals experience a latent period due to interactions between the Matthew effect and incubation, mirroring historical patterns observed in seasonal flu outbreaks. The emergence of chaotic states is observed when two delays intersect critical curves, highlighting the complex dynamics that can arise in historical epidemic models. A novel approach is introduced, utilizing eigenvalue ratios from minimum/maximum Laplacian matrices (excluding 0) and critical delay values, to identify stable regions within network-organized systems, providing a new tool for historical epidemiological analysis. The paper further explores dynamic and biological mechanisms, discussing how these findings can inform historical and contemporary strategies for managing infectious disease outbreaks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
14.30%
发文量
542
审稿时长
1.9 months
期刊介绍: Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.
期刊最新文献
Laplacian operator and its square lattice discretization: Green function vs. Lattice Green function for the flat 2-torus and other related 2D manifolds The role of mobility in epidemics near criticality Projected state ensemble of a generic model of many-body quantum chaos Quantising a Hamiltonian curl force Operator dynamics and entanglement in space-time dual Hadamard lattices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1