{"title":"接枝在孔隙中的晶格星形聚合物的逸出转变","authors":"C J Bradly, E J Janse van Rensburg","doi":"10.1088/1751-8121/ad707f","DOIUrl":null,"url":null,"abstract":"Polymers in confined spaces are compressed and have reduced conformational entropy, and will partially or fully escape from confinement if conditions are suitable. This is in particular the case for a polymer grafted in a pore. The escape of the polymer from the pore may be considered a partial translocation from the pore into bulk solution, and the resulting conformational readjustment of the polymer has characteristics of a thermodynamic phase transition. In this paper a lattice self-avoiding walk model of a star polymer grafted in a pore is examined numerically using the PERM algorithm. We show that the arms of the grafted lattice star escape one at a time as the length of the pore is reduced, consistent with earlier results in the literature. Critical points for the escape transitions are estimated for square and cubic lattice models and we also examine various properties of the model as it undergoes the escape transition.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"42 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The escape transition of a lattice star polymer grafted in a pore\",\"authors\":\"C J Bradly, E J Janse van Rensburg\",\"doi\":\"10.1088/1751-8121/ad707f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polymers in confined spaces are compressed and have reduced conformational entropy, and will partially or fully escape from confinement if conditions are suitable. This is in particular the case for a polymer grafted in a pore. The escape of the polymer from the pore may be considered a partial translocation from the pore into bulk solution, and the resulting conformational readjustment of the polymer has characteristics of a thermodynamic phase transition. In this paper a lattice self-avoiding walk model of a star polymer grafted in a pore is examined numerically using the PERM algorithm. We show that the arms of the grafted lattice star escape one at a time as the length of the pore is reduced, consistent with earlier results in the literature. Critical points for the escape transitions are estimated for square and cubic lattice models and we also examine various properties of the model as it undergoes the escape transition.\",\"PeriodicalId\":16763,\"journal\":{\"name\":\"Journal of Physics A: Mathematical and Theoretical\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A: Mathematical and Theoretical\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad707f\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad707f","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
The escape transition of a lattice star polymer grafted in a pore
Polymers in confined spaces are compressed and have reduced conformational entropy, and will partially or fully escape from confinement if conditions are suitable. This is in particular the case for a polymer grafted in a pore. The escape of the polymer from the pore may be considered a partial translocation from the pore into bulk solution, and the resulting conformational readjustment of the polymer has characteristics of a thermodynamic phase transition. In this paper a lattice self-avoiding walk model of a star polymer grafted in a pore is examined numerically using the PERM algorithm. We show that the arms of the grafted lattice star escape one at a time as the length of the pore is reduced, consistent with earlier results in the literature. Critical points for the escape transitions are estimated for square and cubic lattice models and we also examine various properties of the model as it undergoes the escape transition.
期刊介绍:
Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.