新型 A 类黄素单加氧酶的结构和功能表征

Brian C. Richardson, Zachary R. Turlington, Sofia Vaz Ferreira de Macedo, Sara K. Phillips, Kay Perry, Savannah G. Brancato, Emmalee W. Cooke, Jonathan R. Gwilt, Morgan A. Dasovich, Andrew J. Roering, Francis M. Rossi, Mark J. Snider, Jarrod B. French, Katherine A. Hicks
{"title":"新型 A 类黄素单加氧酶的结构和功能表征","authors":"Brian C. Richardson, Zachary R. Turlington, Sofia Vaz Ferreira de Macedo, Sara K. Phillips, Kay Perry, Savannah G. Brancato, Emmalee W. Cooke, Jonathan R. Gwilt, Morgan A. Dasovich, Andrew J. Roering, Francis M. Rossi, Mark J. Snider, Jarrod B. French, Katherine A. Hicks","doi":"10.1021/acs.biochem.4c00306","DOIUrl":null,"url":null,"abstract":"A gene cluster responsible for the degradation of nicotinic acid (NA) in <i>Bacillus niacini</i> has recently been identified, and the structures and functions of the resulting enzymes are currently being evaluated to establish pathway intermediates. One of the genes within this cluster encodes a flavin monooxygenase (BnFMO) that is hypothesized to catalyze a hydroxylation reaction. Kinetic analyses of the recombinantly purified BnFMO suggest that this enzyme catalyzes the hydroxylation of 2,6-dihydroxynicotinic acid (2,6-DHNA) or 2,6-dihydroxypyridine (2,6-DHP), which is formed spontaneously by the decarboxylation of 2,6-DHNA. To understand the details of this hydroxylation reaction, we determined the structure of BnFMO using a multimodel approach combining protein X-ray crystallography and cryo-electron microscopy (cryo-EM). A liganded BnFMO cryo-EM structure was obtained in the presence of 2,6-DHP, allowing us to make predictions about potential catalytic residues. The structural data demonstrate that BnFMO is trimeric, which is unusual for Class A flavin monooxygenases. In both the electron density and coulomb potential maps, a region at the trimeric interface was observed that was consistent with and modeled as lipid molecules. High-resolution mass spectral analysis suggests that there is a mixture of phosphatidylethanolamine and phosphatidylglycerol lipids present. Together, these data provide insights into the molecular details of the central hydroxylation reaction unique to the aerobic degradation of NA in <i>Bacillus niacini</i>.","PeriodicalId":501642,"journal":{"name":"Biochemistry","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural and Functional Characterization of a Novel Class A Flavin Monooxygenase from Bacillus niacini\",\"authors\":\"Brian C. Richardson, Zachary R. Turlington, Sofia Vaz Ferreira de Macedo, Sara K. Phillips, Kay Perry, Savannah G. Brancato, Emmalee W. Cooke, Jonathan R. Gwilt, Morgan A. Dasovich, Andrew J. Roering, Francis M. Rossi, Mark J. Snider, Jarrod B. French, Katherine A. Hicks\",\"doi\":\"10.1021/acs.biochem.4c00306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A gene cluster responsible for the degradation of nicotinic acid (NA) in <i>Bacillus niacini</i> has recently been identified, and the structures and functions of the resulting enzymes are currently being evaluated to establish pathway intermediates. One of the genes within this cluster encodes a flavin monooxygenase (BnFMO) that is hypothesized to catalyze a hydroxylation reaction. Kinetic analyses of the recombinantly purified BnFMO suggest that this enzyme catalyzes the hydroxylation of 2,6-dihydroxynicotinic acid (2,6-DHNA) or 2,6-dihydroxypyridine (2,6-DHP), which is formed spontaneously by the decarboxylation of 2,6-DHNA. To understand the details of this hydroxylation reaction, we determined the structure of BnFMO using a multimodel approach combining protein X-ray crystallography and cryo-electron microscopy (cryo-EM). A liganded BnFMO cryo-EM structure was obtained in the presence of 2,6-DHP, allowing us to make predictions about potential catalytic residues. The structural data demonstrate that BnFMO is trimeric, which is unusual for Class A flavin monooxygenases. In both the electron density and coulomb potential maps, a region at the trimeric interface was observed that was consistent with and modeled as lipid molecules. High-resolution mass spectral analysis suggests that there is a mixture of phosphatidylethanolamine and phosphatidylglycerol lipids present. Together, these data provide insights into the molecular details of the central hydroxylation reaction unique to the aerobic degradation of NA in <i>Bacillus niacini</i>.\",\"PeriodicalId\":501642,\"journal\":{\"name\":\"Biochemistry\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biochem.4c00306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近在烟酸芽孢杆菌(Bacillus niacini)中发现了一个负责降解烟酸(NA)的基因簇,目前正在对由此产生的酶的结构和功能进行评估,以确定途径中间体。该基因簇中的一个基因编码一种黄素单加氧酶(BnFMO),据推测该酶可催化羟化反应。对重组纯化的 BnFMO 进行的动力学分析表明,这种酶催化 2,6-DHNA 或 2,6-DHP 的羟化反应,后者是由 2,6-DHNA 的脱羧反应自发形成的。为了了解这种羟化反应的细节,我们采用了一种结合蛋白质 X 射线晶体学和低温电子显微镜(cryo-EM)的多模型方法确定了 BnFMO 的结构。在 2,6-DHP 存在的情况下,我们获得了配位的 BnFMO 冷冻电子显微镜结构,从而对潜在的催化残基进行了预测。结构数据表明,BnFMO 是三聚体,这在 A 类黄素单加氧酶中并不常见。在电子密度图和库仑势图中,都观察到了三聚体界面上的一个区域,该区域与脂质分子一致,并被模拟为脂质分子。高分辨率质谱分析表明,存在磷脂酰乙醇胺和磷脂酰甘油脂质的混合物。这些数据有助于深入了解烟酸芽孢杆菌有氧降解 NA 所特有的中心羟化反应的分子细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural and Functional Characterization of a Novel Class A Flavin Monooxygenase from Bacillus niacini
A gene cluster responsible for the degradation of nicotinic acid (NA) in Bacillus niacini has recently been identified, and the structures and functions of the resulting enzymes are currently being evaluated to establish pathway intermediates. One of the genes within this cluster encodes a flavin monooxygenase (BnFMO) that is hypothesized to catalyze a hydroxylation reaction. Kinetic analyses of the recombinantly purified BnFMO suggest that this enzyme catalyzes the hydroxylation of 2,6-dihydroxynicotinic acid (2,6-DHNA) or 2,6-dihydroxypyridine (2,6-DHP), which is formed spontaneously by the decarboxylation of 2,6-DHNA. To understand the details of this hydroxylation reaction, we determined the structure of BnFMO using a multimodel approach combining protein X-ray crystallography and cryo-electron microscopy (cryo-EM). A liganded BnFMO cryo-EM structure was obtained in the presence of 2,6-DHP, allowing us to make predictions about potential catalytic residues. The structural data demonstrate that BnFMO is trimeric, which is unusual for Class A flavin monooxygenases. In both the electron density and coulomb potential maps, a region at the trimeric interface was observed that was consistent with and modeled as lipid molecules. High-resolution mass spectral analysis suggests that there is a mixture of phosphatidylethanolamine and phosphatidylglycerol lipids present. Together, these data provide insights into the molecular details of the central hydroxylation reaction unique to the aerobic degradation of NA in Bacillus niacini.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Collapsed State Mediates the Low Fidelity of the DNA Polymerase β I260 Mutant A Biparatopic Intrabody Renders Vero Cells Impervious to Ricin Intoxication Decoding Substrate Selectivity of an Archaeal RlmCD-like Methyltransferase Through Its Salient Traits Substrate Specificity of a Methyltransferase Involved in the Biosynthesis of the Lantibiotic Cacaoidin Determination of Initial Rates of Lipopolysaccharide Transport
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1