Umar Farooq, Muhammad Ajmal, Shicheng Li, James Yang, Sana Ullah
{"title":"评估 Pedotransfer 函数以估算土壤水分保持曲线:概念回顾","authors":"Umar Farooq, Muhammad Ajmal, Shicheng Li, James Yang, Sana Ullah","doi":"10.3390/w16172547","DOIUrl":null,"url":null,"abstract":"The soil water retention curve (SWRC) is a vital soil property used to evaluate the soil’s water holding capacity, a critical factor in various applications such as determining soil water availability for plants, soil conservation and management, climate change adaptation, and mitigation of flood risks. Estimating SWRC directly in the field and laboratory is a time-consuming and laborious process and requires numerous instruments and measurements at a specific location. In this context, various estimation approaches have been developed, including pedotransfer functions (PTFs), over the past three decades to estimate soil water retention and its associated properties. Despite the efficiencies, PTFs and semi-physical approach-based models often have several limitations, particularly in the dry range of the SWRC. PTFs-based modeling has become a key research topic due to readily available soil data and cost-effective methods for deriving essential soil parameters, which enable more efficient decision-making in sustainable land-use management. Therefore, advancement and adjustment are necessary for reliable estimations of the SWRC from readily available data. This article reviews the evaluation of the current and past PTFs for estimating the SWRC. This study aims to evaluate PTF techniques and semi-physical approaches based on soil texture, bulk density, porosity, and other related factors. Additionally, it also assesses the performance and limitations of various common semi-physical models proposed and developed by Arya and Paris, Haverkamp and Parlange, the Modified Kovács model by Aubertin et al., Chang and Cheng, Meskini-Vishkaee et al., Vidler et al., and Zhai et al. This assessment will be effective for researchers in this field and provide valuable insight into the importance of new PTFs for modeling SWRC.","PeriodicalId":23788,"journal":{"name":"Water","volume":"35 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Pedotransfer Functions to Estimate Soil Water Retention Curve: A Conceptual Review\",\"authors\":\"Umar Farooq, Muhammad Ajmal, Shicheng Li, James Yang, Sana Ullah\",\"doi\":\"10.3390/w16172547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The soil water retention curve (SWRC) is a vital soil property used to evaluate the soil’s water holding capacity, a critical factor in various applications such as determining soil water availability for plants, soil conservation and management, climate change adaptation, and mitigation of flood risks. Estimating SWRC directly in the field and laboratory is a time-consuming and laborious process and requires numerous instruments and measurements at a specific location. In this context, various estimation approaches have been developed, including pedotransfer functions (PTFs), over the past three decades to estimate soil water retention and its associated properties. Despite the efficiencies, PTFs and semi-physical approach-based models often have several limitations, particularly in the dry range of the SWRC. PTFs-based modeling has become a key research topic due to readily available soil data and cost-effective methods for deriving essential soil parameters, which enable more efficient decision-making in sustainable land-use management. Therefore, advancement and adjustment are necessary for reliable estimations of the SWRC from readily available data. This article reviews the evaluation of the current and past PTFs for estimating the SWRC. This study aims to evaluate PTF techniques and semi-physical approaches based on soil texture, bulk density, porosity, and other related factors. Additionally, it also assesses the performance and limitations of various common semi-physical models proposed and developed by Arya and Paris, Haverkamp and Parlange, the Modified Kovács model by Aubertin et al., Chang and Cheng, Meskini-Vishkaee et al., Vidler et al., and Zhai et al. This assessment will be effective for researchers in this field and provide valuable insight into the importance of new PTFs for modeling SWRC.\",\"PeriodicalId\":23788,\"journal\":{\"name\":\"Water\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/w16172547\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/w16172547","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Evaluation of Pedotransfer Functions to Estimate Soil Water Retention Curve: A Conceptual Review
The soil water retention curve (SWRC) is a vital soil property used to evaluate the soil’s water holding capacity, a critical factor in various applications such as determining soil water availability for plants, soil conservation and management, climate change adaptation, and mitigation of flood risks. Estimating SWRC directly in the field and laboratory is a time-consuming and laborious process and requires numerous instruments and measurements at a specific location. In this context, various estimation approaches have been developed, including pedotransfer functions (PTFs), over the past three decades to estimate soil water retention and its associated properties. Despite the efficiencies, PTFs and semi-physical approach-based models often have several limitations, particularly in the dry range of the SWRC. PTFs-based modeling has become a key research topic due to readily available soil data and cost-effective methods for deriving essential soil parameters, which enable more efficient decision-making in sustainable land-use management. Therefore, advancement and adjustment are necessary for reliable estimations of the SWRC from readily available data. This article reviews the evaluation of the current and past PTFs for estimating the SWRC. This study aims to evaluate PTF techniques and semi-physical approaches based on soil texture, bulk density, porosity, and other related factors. Additionally, it also assesses the performance and limitations of various common semi-physical models proposed and developed by Arya and Paris, Haverkamp and Parlange, the Modified Kovács model by Aubertin et al., Chang and Cheng, Meskini-Vishkaee et al., Vidler et al., and Zhai et al. This assessment will be effective for researchers in this field and provide valuable insight into the importance of new PTFs for modeling SWRC.
期刊介绍:
Water (ISSN 2073-4441) is an international and cross-disciplinary scholarly journal covering all aspects of water including water science and technology, and the hydrology, ecology and management of water resources. It publishes regular research papers, critical reviews and short communications, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.