离散非线性多代理系统群体共识跟踪的自适应学习控制

IF 2.7 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Asian Journal of Control Pub Date : 2024-08-16 DOI:10.1002/asjc.3477
Qianhui Gao, Jinsha Li, Junmin Li
{"title":"离散非线性多代理系统群体共识跟踪的自适应学习控制","authors":"Qianhui Gao, Jinsha Li, Junmin Li","doi":"10.1002/asjc.3477","DOIUrl":null,"url":null,"abstract":"In this article, we explore the group output tracking consensus problem for discrete‐time strict‐feedback ‐order nonlinear multiagent systems that run repeatedly on finite time . A novel distributed adaptive iterative learning group consensus protocol is designed, which consists of two main components. The first component is based on time‐varying neural networks, which is used to approximate the unknown nonlinear function in the ‐step ahead predictor. In general, not all followers can access the information regarding the leader, which complicates the design of iterative learning protocols for MASs. Therefore, the second component of the protocol addresses this challenge by treating the leader's output as a time‐varying parameter and designing a time‐varying auxiliary term to compensate the leader's output information. Parameter updating laws and initial state learning laws are also proposed via the cooperative‐competitive relationship between the agents. We demonstrate the group consensus with sufficient small errors can be achieved at time , as the number of iterations proceed to infinity. Then, the results are extended to the case of multisubgroups and multileaders. Finally, two simulations validate the findings of this article.","PeriodicalId":55453,"journal":{"name":"Asian Journal of Control","volume":"9 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive learning control for group consensus tracking of discrete nonlinear multiagent systems\",\"authors\":\"Qianhui Gao, Jinsha Li, Junmin Li\",\"doi\":\"10.1002/asjc.3477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we explore the group output tracking consensus problem for discrete‐time strict‐feedback ‐order nonlinear multiagent systems that run repeatedly on finite time . A novel distributed adaptive iterative learning group consensus protocol is designed, which consists of two main components. The first component is based on time‐varying neural networks, which is used to approximate the unknown nonlinear function in the ‐step ahead predictor. In general, not all followers can access the information regarding the leader, which complicates the design of iterative learning protocols for MASs. Therefore, the second component of the protocol addresses this challenge by treating the leader's output as a time‐varying parameter and designing a time‐varying auxiliary term to compensate the leader's output information. Parameter updating laws and initial state learning laws are also proposed via the cooperative‐competitive relationship between the agents. We demonstrate the group consensus with sufficient small errors can be achieved at time , as the number of iterations proceed to infinity. Then, the results are extended to the case of multisubgroups and multileaders. Finally, two simulations validate the findings of this article.\",\"PeriodicalId\":55453,\"journal\":{\"name\":\"Asian Journal of Control\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/asjc.3477\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/asjc.3477","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了在有限时间内重复运行的离散-时严格反馈-阶非线性多代理系统的群体输出跟踪共识问题。我们设计了一种新颖的分布式自适应迭代学习小组共识协议,它由两个主要部分组成。第一个部分基于时变神经网络,用于近似超前预测器中的未知非线性函数。一般来说,并非所有追随者都能获取领导者的信息,这使得 MAS 的迭代学习协议设计变得复杂。因此,协议的第二部分将领导者的输出视为时变参数,并设计一个时变辅助项来补偿领导者的输出信息,从而解决了这一难题。我们还通过代理之间的合作竞争关系提出了参数更新法则和初始状态学习法则。然后,我们将结果扩展到多分组和多领导的情况。最后,两个模拟验证了本文的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive learning control for group consensus tracking of discrete nonlinear multiagent systems
In this article, we explore the group output tracking consensus problem for discrete‐time strict‐feedback ‐order nonlinear multiagent systems that run repeatedly on finite time . A novel distributed adaptive iterative learning group consensus protocol is designed, which consists of two main components. The first component is based on time‐varying neural networks, which is used to approximate the unknown nonlinear function in the ‐step ahead predictor. In general, not all followers can access the information regarding the leader, which complicates the design of iterative learning protocols for MASs. Therefore, the second component of the protocol addresses this challenge by treating the leader's output as a time‐varying parameter and designing a time‐varying auxiliary term to compensate the leader's output information. Parameter updating laws and initial state learning laws are also proposed via the cooperative‐competitive relationship between the agents. We demonstrate the group consensus with sufficient small errors can be achieved at time , as the number of iterations proceed to infinity. Then, the results are extended to the case of multisubgroups and multileaders. Finally, two simulations validate the findings of this article.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asian Journal of Control
Asian Journal of Control 工程技术-自动化与控制系统
CiteScore
4.80
自引率
25.00%
发文量
253
审稿时长
7.2 months
期刊介绍: The Asian Journal of Control, an Asian Control Association (ACA) and Chinese Automatic Control Society (CACS) affiliated journal, is the first international journal originating from the Asia Pacific region. The Asian Journal of Control publishes papers on original theoretical and practical research and developments in the areas of control, involving all facets of control theory and its application. Published six times a year, the Journal aims to be a key platform for control communities throughout the world. The Journal provides a forum where control researchers and practitioners can exchange knowledge and experiences on the latest advances in the control areas, and plays an educational role for students and experienced researchers in other disciplines interested in this continually growing field. The scope of the journal is extensive. Topics include: The theory and design of control systems and components, encompassing: Robust and distributed control using geometric, optimal, stochastic and nonlinear methods Game theory and state estimation Adaptive control, including neural networks, learning, parameter estimation and system fault detection Artificial intelligence, fuzzy and expert systems Hierarchical and man-machine systems All parts of systems engineering which consider the reliability of components and systems Emerging application areas, such as: Robotics Mechatronics Computers for computer-aided design, manufacturing, and control of various industrial processes Space vehicles and aircraft, ships, and traffic Biomedical systems National economies Power systems Agriculture Natural resources.
期刊最新文献
Issue Information Issue Information Issue Information Issue Information Adaptive output feedback time-varying formation tracking of multi-agent system with a leader of unknown input
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1