通过低温热处理构建金刚石/石墨烯复合结构

IF 1.2 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Superhard Materials Pub Date : 2024-09-06 DOI:10.3103/S1063457624040051
Danhui Han, Junlong Liu, Chong Peng, Baoyan Liang
{"title":"通过低温热处理构建金刚石/石墨烯复合结构","authors":"Danhui Han,&nbsp;Junlong Liu,&nbsp;Chong Peng,&nbsp;Baoyan Liang","doi":"10.3103/S1063457624040051","DOIUrl":null,"url":null,"abstract":"<p>A diamond/graphene composite structure can be obtained using graphene oxide (GO) to undergo a significant thermal reduction reaction at approximately 200°C. The prepared composites were characterized via X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The effects of different particle sizes and diamond contents on the products’ phase composition and microstructure were studied. Results indicate that GO underwent a significant thermal reduction reaction at approximately 200°C. Most GO materials were reduced to graphene. They underwent expansion and were peeled off into an organ-like shape. A graphene coating was formed on the surface of diamond particles via a simple heat treatment from the mixtures of diamond and GO powders. The coating effect of large diamond particles was poor because of their high inertness. A quasi core–shell structure of diamond/graphene composite structure can be obtained using fine-grained diamonds.</p>","PeriodicalId":670,"journal":{"name":"Journal of Superhard Materials","volume":"46 4","pages":"275 - 284"},"PeriodicalIF":1.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of Diamond/Graphene Composite Structure via a Low-Temperature Heat Treatment\",\"authors\":\"Danhui Han,&nbsp;Junlong Liu,&nbsp;Chong Peng,&nbsp;Baoyan Liang\",\"doi\":\"10.3103/S1063457624040051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A diamond/graphene composite structure can be obtained using graphene oxide (GO) to undergo a significant thermal reduction reaction at approximately 200°C. The prepared composites were characterized via X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The effects of different particle sizes and diamond contents on the products’ phase composition and microstructure were studied. Results indicate that GO underwent a significant thermal reduction reaction at approximately 200°C. Most GO materials were reduced to graphene. They underwent expansion and were peeled off into an organ-like shape. A graphene coating was formed on the surface of diamond particles via a simple heat treatment from the mixtures of diamond and GO powders. The coating effect of large diamond particles was poor because of their high inertness. A quasi core–shell structure of diamond/graphene composite structure can be obtained using fine-grained diamonds.</p>\",\"PeriodicalId\":670,\"journal\":{\"name\":\"Journal of Superhard Materials\",\"volume\":\"46 4\",\"pages\":\"275 - 284\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Superhard Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1063457624040051\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superhard Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.3103/S1063457624040051","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 利用氧化石墨烯(GO)在约 200°C 的温度下发生显著的热还原反应,可获得金刚石/石墨烯复合结构。通过 X 射线衍射、扫描电子显微镜、透射电子显微镜、X 射线光电子能谱和傅立叶变换红外光谱对制备的复合材料进行了表征。研究了不同粒度和金刚石含量对产品相组成和微观结构的影响。结果表明,GO 在大约 200°C 的温度下发生了显著的热还原反应。大多数 GO 材料被还原成石墨烯。这些石墨烯发生膨胀并被剥离成类似器官的形状。通过简单的热处理,金刚石和 GO 粉末的混合物在金刚石颗粒表面形成了石墨烯涂层。大颗粒金刚石由于惰性较高,涂层效果较差。使用细粒度金刚石可以获得准核壳结构的金刚石/石墨烯复合结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Construction of Diamond/Graphene Composite Structure via a Low-Temperature Heat Treatment

A diamond/graphene composite structure can be obtained using graphene oxide (GO) to undergo a significant thermal reduction reaction at approximately 200°C. The prepared composites were characterized via X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The effects of different particle sizes and diamond contents on the products’ phase composition and microstructure were studied. Results indicate that GO underwent a significant thermal reduction reaction at approximately 200°C. Most GO materials were reduced to graphene. They underwent expansion and were peeled off into an organ-like shape. A graphene coating was formed on the surface of diamond particles via a simple heat treatment from the mixtures of diamond and GO powders. The coating effect of large diamond particles was poor because of their high inertness. A quasi core–shell structure of diamond/graphene composite structure can be obtained using fine-grained diamonds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Superhard Materials
Journal of Superhard Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.80
自引率
66.70%
发文量
26
审稿时长
2 months
期刊介绍: Journal of Superhard Materials presents up-to-date results of basic and applied research on production, properties, and applications of superhard materials and related tools. It publishes the results of fundamental research on physicochemical processes of forming and growth of single-crystal, polycrystalline, and dispersed materials, diamond and diamond-like films; developments of methods for spontaneous and controlled synthesis of superhard materials and methods for static, explosive and epitaxial synthesis. The focus of the journal is large single crystals of synthetic diamonds; elite grinding powders and micron powders of synthetic diamonds and cubic boron nitride; polycrystalline and composite superhard materials based on diamond and cubic boron nitride; diamond and carbide tools for highly efficient metal-working, boring, stone-working, coal mining and geological exploration; articles of ceramic; polishing pastes for high-precision optics; precision lathes for diamond turning; technologies of precise machining of metals, glass, and ceramics. The journal covers all fundamental and technological aspects of synthesis, characterization, properties, devices and applications of these materials. The journal welcomes manuscripts from all countries in the English language.
期刊最新文献
Melting Temperatures of (Super)Hard Cubic Boron Pnictides Modeling the Densification of Boron Carbide Based Ceramic Materials under Flash Pressure Sintering Electrodynamic Properties of AlN–C and AlN–C–Mo Composites Produced by Pressureless Sintering Original Orthorhombic Tetrahedral-Trigonal Hybrid Allotropes Cn (n = 8, 10, 12, 14) with Ethene–Like and Propadiene–Like Units: Crystal Engineering and Quantum Mechanical Calculations Effect of Sintering Parameters and Liquid Phase Content on the Properties of Fe-Rich Based Impregnated Diamond Bit Matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1