{"title":"论砷化硼在压力下的熔化","authors":"Vladimir L. Solozhenko","doi":"10.3103/S1063457624040105","DOIUrl":null,"url":null,"abstract":"<p>Melting of cubic boron arsenide, BAs, has been studied at pressures up to 8 GPa using <i>in situ</i> electrical resistivity measurements. It was found that above 2.5 GPa BAs melts congruently, and the melting curve has a negative slope (–53 ± 5 K/GPa), indicating a higher density of the melt as compared to the solid phase. The melting point of BAs at ambient pressure has been estimated to be 2410(30) K.</p>","PeriodicalId":670,"journal":{"name":"Journal of Superhard Materials","volume":"46 4","pages":"327 - 329"},"PeriodicalIF":1.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Melting of Boron Arsenide under Pressure\",\"authors\":\"Vladimir L. Solozhenko\",\"doi\":\"10.3103/S1063457624040105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Melting of cubic boron arsenide, BAs, has been studied at pressures up to 8 GPa using <i>in situ</i> electrical resistivity measurements. It was found that above 2.5 GPa BAs melts congruently, and the melting curve has a negative slope (–53 ± 5 K/GPa), indicating a higher density of the melt as compared to the solid phase. The melting point of BAs at ambient pressure has been estimated to be 2410(30) K.</p>\",\"PeriodicalId\":670,\"journal\":{\"name\":\"Journal of Superhard Materials\",\"volume\":\"46 4\",\"pages\":\"327 - 329\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Superhard Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1063457624040105\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superhard Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.3103/S1063457624040105","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Melting of cubic boron arsenide, BAs, has been studied at pressures up to 8 GPa using in situ electrical resistivity measurements. It was found that above 2.5 GPa BAs melts congruently, and the melting curve has a negative slope (–53 ± 5 K/GPa), indicating a higher density of the melt as compared to the solid phase. The melting point of BAs at ambient pressure has been estimated to be 2410(30) K.
期刊介绍:
Journal of Superhard Materials presents up-to-date results of basic and applied research on production, properties, and applications of superhard materials and related tools. It publishes the results of fundamental research on physicochemical processes of forming and growth of single-crystal, polycrystalline, and dispersed materials, diamond and diamond-like films; developments of methods for spontaneous and controlled synthesis of superhard materials and methods for static, explosive and epitaxial synthesis. The focus of the journal is large single crystals of synthetic diamonds; elite grinding powders and micron powders of synthetic diamonds and cubic boron nitride; polycrystalline and composite superhard materials based on diamond and cubic boron nitride; diamond and carbide tools for highly efficient metal-working, boring, stone-working, coal mining and geological exploration; articles of ceramic; polishing pastes for high-precision optics; precision lathes for diamond turning; technologies of precise machining of metals, glass, and ceramics. The journal covers all fundamental and technological aspects of synthesis, characterization, properties, devices and applications of these materials. The journal welcomes manuscripts from all countries in the English language.